About Rutherford's Gold Foil Experiment

Gold

Ernest Rutherford, originally from New Zealand, is credited as being the father of nuclear physics for his discoveries in atomic structure, even though Hantaro Nagaoka, a physicist from the Imperial University of Tokyo, first proposed the theory of the nucleus as it is known today. Rutherford's "gold foil experiment" led to the discovery that most of an atom's mass is located in a dense region now called the nucleus. Prior to the groundbreaking gold foil experiment, Rutherford was granted the Nobel Prize for other key contributions in the field of chemistry.

The popular theory of atomic structure at the time of Rutherford's experiment was the "plum pudding model." This model was developed in 1904 by J.J. Thompson, the scientist who discovered the electron. This theory held that the negatively charged electrons in an atom were floating in a sea of positive charge–the electrons being akin to plums in a bowl of pudding. Although Dr. Nagaoka had published his competing theory that electrons orbit a positive nucleus, akin to the way the planet Saturn is orbited by its rings, in 1904, the plum pudding model was the prevailing theory on the structure of the atom until it was disproved by Ernest Rutherford in 1911.

The gold foil experiment was conducted under the supervision of Rutherford at the University of Manchester in 1909 by scientist Hans Geiger (whose work eventually led to the development of the Geiger counter) and undergraduate student Ernest Marsden. Rutherford, chair of the Manchester physics department at the time of the experiment, is given primary credit for the experiment, as the theories that resulted are primarily his work. Rutherford's gold foil experiment is also sometimes referred to as the Geiger-Marsden experiment.

The gold foil experiment consisted of a series of tests in which a positively charged helium particle was shot at a very thin layer of gold foil. The expected result was that the positive particles would be moved just a few degrees from their path as they passed through the sea of positive charge proposed in the plum pudding model. The result, however, was that the positive particles were repelled off of the gold foil by nearly 180 degrees in a very small region of the atom, while most of the remaining particles were not deflected at all but rather passed right through the atom.

Significance

The data generated from the gold foil experiment demonstrated that the plum pudding model of the atom was incorrect. The way in which the positive particles bounced off the thin foil indicated that the majority of the mass of an atom was concentrated in one small region. Because the majority of the positive particles continued on their original path unmoved, Rutherford correctly deducted that most of the remainder of the atom was empty space. Rutherford termed his discovery "the central charge," a region later named the nucleus.

Rutherford's discovery of the nucleus and proposed atomic structure was later refined by physicist Niels Bohr in 1913. Bohr's model of the atom, also referred to as the Rutherford Bohr model, is the basic atomic model used today. Rutherford's description of the atom set the foundation for all future atomic models and the development of nuclear physics.

Cite This Article

Pestka, Jessica. "About Rutherford's Gold Foil Experiment" sciencing.com , https://www.sciencing.com/rutherfords-gold-foil-experiment-4569065/. 24 April 2017.

Pestka, Jessica. (2017, April 24). About Rutherford's Gold Foil Experiment. sciencing.com . Retrieved from https://www.sciencing.com/rutherfords-gold-foil-experiment-4569065/

Pestka, Jessica. About Rutherford's Gold Foil Experiment last modified March 24, 2022. https://www.sciencing.com/rutherfords-gold-foil-experiment-4569065/

Recommended

What is the 'Gold Foil Experiment'? The Geiger-Marsden experiments explained

Physicists got their first look at the structure of the atomic nucleus.

The gold foil experiments gave physicists their first view of the structure of the atomic nucleus and the physics underlying the everyday world.

J.J. Thomson model of the atom

Gold foil experiments, rutherford model of the atom.

  • The real atomic model

Additional Resources

Bibliography.

The Geiger-Marsden experiment, also called the gold foil experiment or the α-particle scattering experiments, refers to a series of early-20th-century experiments that gave physicists their first view of the structure of the atomic nucleus and the physics underlying the everyday world. It was first proposed by Nobel Prize -winning physicist Ernest Rutherford.

As familiar as terms like electron, proton and neutron are to us now, in the early 1900s, scientists had very little concept of the fundamental particles that made up atoms . 

In fact, until 1897, scientists believed that atoms had no internal structure and believed that they were an indivisible unit of matter. Even the label "atom" gives this impression, given that it's derived from the Greek word "atomos," meaning "indivisible." 

In J.J. Thomson’s

But that year, University of Cambridge physicist Joseph John Thomson discovered the electron and disproved the concept of the atom being unsplittable, according to Britannica . Thomson found that metals emitted negatively charged particles when illuminated with high-frequency light. 

His discovery of electrons also suggested that there were more elements to atomic structure. That's because matter is usually electrically neutral; so if atoms contain negatively charged particles, they must also contain a source of equivalent positive charge to balance out the negative charge.

By 1904, Thomson had suggested a "plum pudding model" of the atom in which an atom comprises a number of negatively charged electrons in a sphere of uniform positive charge,  distributed like blueberries in a muffin. 

The model had serious shortcomings, however — primarily the mysterious nature of this positively charged sphere. One scientist who was skeptical of this model of atoms was Rutherford, who won the Nobel Prize in chemistry for his 1899 discovery of a form of radioactive decay via α-particles — two protons and two neutrons bound together and identical to a helium -4 nucleus, even if the researchers of the time didn't know this.

Rutherford's Nobel-winning discovery of α particles formed the basis of the gold foil experiment, which cast doubt on the plum pudding model. His experiment would probe atomic structure with high-velocity α-particles emitted by a radioactive source. He initially handed off his investigation to two of his protégés, Ernest Marsden and Hans Geiger, according to Britannica . 

Rutherford reasoned that if Thomson's plum pudding model was correct, then when an α-particle hit a thin foil of gold, the particle should pass through with only the tiniest of deflections. This is because α-particles are 7,000 times more massive than the electrons that presumably made up the interior of the atom.

Here, an illustration of Rutherford's particle scattering device used in his gold foil experiment.

Marsden and Geiger conducted the experiments primarily at the Physical Laboratories of the University of Manchester in the U.K. between 1908 and 1913. 

The duo used a radioactive source of α-particles facing a thin sheet of gold or platinum surrounded by fluorescent screens that glowed when struck by the deflected particles, thus allowing the scientists to measure the angle of deflection. 

The research team calculated that if Thomson's model was correct, the maximum deflection should occur when the α-particle grazed an atom it encountered and thus experienced the maximum transverse electrostatic force. Even in this case, the plum pudding model predicted a maximum deflection angle of just 0.06 degrees. 

Of course, an α-particle passing through an extremely thin gold foil would still encounter about 1,000 atoms, and thus its deflections would be essentially random. Even with this random scattering, the maximum angle of refraction if Thomson's model was correct would be just over half a degree. The chance of an α-particle being reflected back was just 1 in 10^1,000 (1 followed by a thousand zeroes). 

Yet, when Geiger and Marsden conducted their eponymous experiment, they found that in about 2% of cases, the α-particle underwent large deflections. Even more shocking, around 1 in 10,000 α-particles were reflected directly back from the gold foil.

Rutherford explained just how extraordinary this result was, likening it to firing a 15-inch (38 centimeters) shell (projectile) at a sheet of tissue paper and having it bounce back at you, according to Britannica  

Extraordinary though they were, the results of the Geiger-Marsden experiments did not immediately cause a sensation in the physics community. Initially, the data were unnoticed or even ignored, according to the book "Quantum Physics: An Introduction" by J. Manners.

The results did have a profound effect on Rutherford, however, who in 1910 set about determining a model of atomic structure that would supersede Thomson's plum pudding model, Manners wrote in his book.

The Rutherford model of the atom, put forward in 1911, proposed a nucleus, where the majority of the particle's mass was concentrated, according to Britannica . Surrounding this tiny central core were electrons, and the distance at which they orbited determined the size of the atom. The model suggested that most of the atom was empty space.

When the α-particle approaches within 10^-13 meters of the compact nucleus of Rutherford's atomic model, it experiences a repulsive force around a million times more powerful than it would experience in the plum pudding model. This explains the large-angle scatterings seen in the Geiger-Marsden experiments.

Later Geiger-Marsden experiments were also instrumental; the 1913 tests helped determine the upper limits of the size of an atomic nucleus. These experiments revealed that the angle of scattering of the α-particle was proportional to the square of the charge of the atomic nucleus, or Z, according to the book "Quantum Physics of Matter," published in 2000 and edited by Alan Durrant.  

In 1920, James Chadwick used a similar experimental setup to determine the Z value for a number of metals. The British physicist went on to discover the neutron in 1932, delineating it as a separate particle from the proton, the American Physical Society said . 

What did the Rutherford model get right and wrong?

Yet the Rutherford model shared a critical problem with the earlier plum pudding model of the atom: The orbiting electrons in both models should be continuously emitting electromagnetic energy, which would cause them to lose energy and eventually spiral into the nucleus. In fact, the electrons in Rutherford's model should have lasted less than 10^-5 seconds. 

Another problem presented by Rutherford's model is that it doesn't account for the sizes of atoms. 

Despite these failings, the Rutherford model derived from the Geiger-Marsden experiments would become the inspiration for Niels Bohr 's atomic model of hydrogen , for which he won a Nobel Prize in Physics .

Bohr united Rutherford's atomic model with the quantum theories of Max Planck to determine that electrons in an atom can only take discrete energy values, thereby explaining why they remain stable around a nucleus unless emitting or absorbing a photon, or light particle.

Thus, the work of Rutherford, Geiger  (who later became famous for his invention of a radiation detector)  and Marsden helped to form the foundations of both quantum mechanics and particle physics. 

Rutherford's idea of firing a beam at a target was adapted to particle accelerators during the 20th century. Perhaps the ultimate example of this type of experiment is the Large Hadron Collider near Geneva, which accelerates beams of particles to near light speed and slams them together. 

  • See a modern reconstruction of the Geiger-Marsden gold foil experiment conducted by BackstageScience and explained by particle physicist Bruce Kennedy . 
  • Find out more about the Bohr model of the atom which would eventually replace the Rutherford atomic model. 
  • Rutherford's protege Hans Gieger would eventually become famous for the invention of a radioactive detector, the Gieger counter. SciShow explains how they work .

Thomson's Atomic Model , Lumens Chemistry for Non-Majors,.

Rutherford Model, Britannica, https://www.britannica.com/science/Rutherford-model

Alpha particle, U.S NRC, https://www.nrc.gov/reading-rm/basic-ref/glossary/alpha-particle.html

Manners. J., et al, 'Quantum Physics: An Introduction,' Open University, 2008. 

Durrant, A., et al, 'Quantum Physics of Matter,' Open University, 2008

Ernest Rutherford, Britannica , https://www.britannica.com/biography/Ernest-Rutherford

Niels Bohr, The Nobel Prize, https://www.nobelprize.org/prizes/physics/1922/bohr/facts/

House. J. E., 'Origins of Quantum Theory,' Fundamentals of Quantum Mechanics (Third Edition) , 2018

Sign up for the Live Science daily newsletter now

Get the world’s most fascinating discoveries delivered straight to your inbox.

Robert Lea is a science journalist in the U.K. who specializes in science, space, physics, astronomy, astrophysics, cosmology, quantum mechanics and technology. Rob's articles have been published in Physics World, New Scientist, Astronomy Magazine, All About Space and ZME Science. He also writes about science communication for Elsevier and the European Journal of Physics. Rob holds a bachelor of science degree in physics and astronomy from the U.K.’s Open University

The shape of light: Scientists reveal image of an individual photon for 1st time ever

Is light a particle or a wave?

Turuchan pika: The adorable ball of fluff that just loves to play

Most Popular

  • 2 Destroyed observatory helped SETI unlock the secrets of 'cosmic lighthouses' powered by dead stars
  • 3 World's 1st mechanical qubit uses no light or electronics. It could lead to ultra-precise gravity-sensing tech.
  • 4 Tiny, portable 'laboratories' sort germs using electricity
  • 5 Do cats communicate with their tails?

rutherford's gold foil experiment explained

rutherford's gold foil experiment explained

Discovering the Nucleus: Rutherford’s Gold Foil Experiment

rutherford's gold foil experiment explained

History of Chemistry: Rutherford Gold Foil Experiment

In this article, you will learn the history behind the Rutherford Gold Foil Experiment and the events that led to the discovery of the atomic nucleus. If you enjoy this article, check out our other history of chemistry articles linked below!

  • Rutherford Atomic Model
  • JJ Thompson cathode-ray tube
  • Rutherfords Jar Experiment
  • Molecular Geometry tutorial
  • The structure of an atom
  • Bohr Atomic Model
  • Nuclear Reactions

Who was Ernest Rutherford?

Biography of Physicist Ernest Rutherford

Ernest Rutherford is known as the father of nuclear physics. Born in Brightwater, New Zealand on August 30th, 1871, Rutherford was the fourth of twelve children. His father was a farmer and his mother a school teacher. From a very early age, Rutherford understood the importance of hard work and the power of education. In school, he excelled greatly and at the age of fifteen won an academic scholarship to study at Nelson Collegiate School. Then, at the age of 19, he won another academic scholarship to study at Canterbury College in Christchurch. A few years later he won another scholarship, the exhibition science scholarship, and he left New Zealand to study at Trinity College, Cambridge in England. While there, he conducted research at the Cavendish Laboratory under his advisor J.J. Thomson .

Rutherford's Nuclear World: The Story of the Discovery of the Nucleus |  Young Rutherford | American Institute of Physics

During his time at Cavendish Lab, Rutherford faced adversity from his peers. Because he was from New Zealand, he was often ostracized by fellow students. In the end, he used this as motivation to succeed. Which he did as he made a multitude of great discoveries through his research in gases and radioactivity. These included the discovery of different types of radiation, radiometric dating, and the nucleus of an atom.

The Rutherford Gold Foil Experiment

The experiment.

While working as a chair at the University of Manchester, Rutherford conducted the gold-foil experiment alongside Hans Geiger and Ernest Marsden. In this experiment, they shot alpha particles –which Rutherford had discovered years prior– directly at a piece of thin gold foil . As the alpha particles passed through, they would hit the phosphorescent screen encasing the foil. When the particles came into contact with the screen, there would be a flash.

rutherford's gold foil experiment explained

Observations

Going into the experiment, Rutherford had formed preconceptions for the experiment based on J.J. Thomson’s plum pudding model . He predicted the alpha particles would shoot through the foil with ease. Some of the particles did manage to pass directly through the foil, but some veered from the path either bouncing back or deflecting. Rutherford found this to be an exciting observation and compared it to shooting a bullet at a piece of tissue and having it bounce back.

From this observation, two deductions were made. Firstly, he concluded most of the atom is composed of empty space. Secondly, he concluded there must be something small, dense, and positive inside the atom to repel the positively charged alpha particles. This became the nucleus, which in Latin means the seed inside of a fruit.

The Nuclear Model

The gold-foil experiment disproved J.J. Thomsons plum pudding model, which hypothesized the atom was positively charged spaced with electrons embedded inside. Therefore, giving way to the nuclear model. In this model, Rutherford theorized the atomic structure was similar to that of the solar system. Where the nucleus was in this middle and surrounded by empty space with orbiting electrons.

PhysicsOpenLab Modern DIY Physics Laboratory for Science Enthusiasts

The rutherford-geiger-marsden experiment.

April 11, 2017 Alpha Spectroscopy , English Posts 89,534 Views

rutherford's gold foil experiment explained

What made by Rutherford and his assistants Geiger and Marsden is perhaps one of the most important experiments of nuclear physics.

The experiments were performed between 1908 and 1913 by Hans Geiger and Ernest Marsden under the direction of Ernest Rutherford at the Physical Laboratories of the University of Manchester.

In the experiment, Rutherford sent a beam of alpha particles (helium nuclei) emitted from a radioactive source against a thin gold foil (the thickness of about 0.0004 mm, corresponding to about 1000 atoms).

Surrounding the gold foil it was placed a zinc sulfide screen that would show a small flash of light when hit by a scattered alpha particle. The idea was to determine the structure of the atom and understand if it were what supposed by Thomson (atom without a nucleus, also known as pudding model ) or if there was something different.

scatteringrutherford

In particular, if the atom had an internal nucleus separated from external electrons, then they would have been able to observe events, or particles, with large angle of deviation . Obtained, actually, these results, the New Zealand physicist concluded that the atom was formed by a small and compact nucleus , but with high charge density, surrounded by an electron cloud. In the image below it is depicted the interaction of the alpha particles beam with the nuclei of the thin gold foil; one can see how the majority of the particles passes undisturbed, or with small angles of deflection, through the “empty” atom, some particles, however, passing close to the nucleus are diverted with a high angle or even bounced backwards.

rutherford's gold foil experiment explained

The interaction between an alpha particle and the nucleus (elastic collision) is also known as Coulomb scattering , because the interaction in the collision is due to the Coulomb force. In the diagram below it is shown the detail of the interaction between an alpha particle and the nucleus of an atom.

rutherford's gold foil experiment explained

Experimental Setup

In the PhysicsOpenLab “laboratory” we tried to replicate the famous Rutherford experiment. With the equipment already used in alpha spectroscopy we built a setup based on an alpha solid-state detector , a 0.9 μCi Am 241 source and a gold foil as a scatterer. In these post we describe the equipment used : Alpha Spectrometer , Gold Leaf Thickness  . The main purpose is not to make precision measurements but to make a qualitative assessment of the scattering as a function of deflection. The images below show the experimental setup:

rutherford's gold foil experiment explained

The alpha source is actually 0.9 μCi of Am 241 (from smoke detector) which emits alpha particles with energy of 5.4 MeV. The alpha particle beam is collimated by a simple hole in a wooden screen. Source and collimator are fixed on a arm free to rotate around a pivot, which hosts the gold foil that acts as a scatterer. The whole is placed inside a sealed box that acts as a vacuum chamber with the help of an ordinary oil rotary vacuum pump. The images below show the “vacuum chamber” and the electronic part for amplification and acquisition connected to the PC for counting events.

rutherford's gold foil experiment explained

Linear Scale :

rutherford's gold foil experiment explained

Semilog Scale

rutherford's gold foil experiment explained

The results obtained in our experiment approach, albeit with obvious limitations, to the expected theoretical results, represented in the following graph:

rutherford's gold foil experiment explained

For completeness, we report also at the side the formula that describes the distribution of the number of the counted particles in function of the scattering angle. Interestingly, this depends on the power of two the atomic number of the target and is inversely proportional to the fourth power of the sin (θ/2).

If you liked this post you can share it on the “social” Facebook , Twitter or LinkedIn with the buttons below. This way you can help us! Thank you !

If you like this site and if you want to contribute to the development of the activities you can make a donation, thank you !

Tags Alpha spectrometer Rutherford

rutherford's gold foil experiment explained

Detection of beta and alfa radiation with KC761B

Abstract: in this article, we continue the presentation of the new KC761B device. In previous posts, we described the device in general terms and its functionality as a gamma spectrometer. In this post, we describe its use as a beta and alpha radiation detector. To detect beta and alpha particles, the device uses a PIN-type semiconductor sensor positioned on the back of the device.

IMAGES

  1. Atom

    rutherford's gold foil experiment explained

  2. Rutherford Gold Foil Experiment Diagram Stock Vector (Royalty Free

    rutherford's gold foil experiment explained

  3. Rutherford Gold Foil Experiment

    rutherford's gold foil experiment explained

  4. Atomic Structure

    rutherford's gold foil experiment explained

  5. Gold Foil Experiment

    rutherford's gold foil experiment explained

  6. In Ernest Rutherford’s gold foil experiment, most positively charged

    rutherford's gold foil experiment explained

VIDEO

  1. Rutherford Gold Foil Experiment

  2. Rutherford's Gold Foil Experiment

  3. Rutherford’s Gold Foil Experiment

  4. Rutherford Goldfoil experiment 🎯🧠🕵️ 🧪#shorts #facts #youtubeshorts

  5. RUTHERFORD GOLD FOIL EXPERIMENT

  6. Rutherford s experiment alpha particle gold foil