- Privacy Policy
Home » Content Analysis – Methods, Types and Examples
Content Analysis – Methods, Types and Examples
Table of Contents
Content Analysis
Definition:
Content analysis is a research method used to analyze and interpret the characteristics of various forms of communication, such as text, images, or audio. It involves systematically analyzing the content of these materials, identifying patterns, themes, and other relevant features, and drawing inferences or conclusions based on the findings.
Content analysis can be used to study a wide range of topics, including media coverage of social issues, political speeches, advertising messages, and online discussions, among others. It is often used in qualitative research and can be combined with other methods to provide a more comprehensive understanding of a particular phenomenon.
Types of Content Analysis
There are generally two types of content analysis:
Quantitative Content Analysis
This type of content analysis involves the systematic and objective counting and categorization of the content of a particular form of communication, such as text or video. The data obtained is then subjected to statistical analysis to identify patterns, trends, and relationships between different variables. Quantitative content analysis is often used to study media content, advertising, and political speeches.
Qualitative Content Analysis
This type of content analysis is concerned with the interpretation and understanding of the meaning and context of the content. It involves the systematic analysis of the content to identify themes, patterns, and other relevant features, and to interpret the underlying meanings and implications of these features. Qualitative content analysis is often used to study interviews, focus groups, and other forms of qualitative data, where the researcher is interested in understanding the subjective experiences and perceptions of the participants.
Methods of Content Analysis
There are several methods of content analysis, including:
Conceptual Analysis
This method involves analyzing the meanings of key concepts used in the content being analyzed. The researcher identifies key concepts and analyzes how they are used, defining them and categorizing them into broader themes.
Content Analysis by Frequency
This method involves counting and categorizing the frequency of specific words, phrases, or themes that appear in the content being analyzed. The researcher identifies relevant keywords or phrases and systematically counts their frequency.
Comparative Analysis
This method involves comparing the content of two or more sources to identify similarities, differences, and patterns. The researcher selects relevant sources, identifies key themes or concepts, and compares how they are represented in each source.
Discourse Analysis
This method involves analyzing the structure and language of the content being analyzed to identify how the content constructs and represents social reality. The researcher analyzes the language used and the underlying assumptions, beliefs, and values reflected in the content.
Narrative Analysis
This method involves analyzing the content as a narrative, identifying the plot, characters, and themes, and analyzing how they relate to the broader social context. The researcher identifies the underlying messages conveyed by the narrative and their implications for the broader social context.
Content Analysis Conducting Guide
Here is a basic guide to conducting a content analysis:
- Define your research question or objective: Before starting your content analysis, you need to define your research question or objective clearly. This will help you to identify the content you need to analyze and the type of analysis you need to conduct.
- Select your sample: Select a representative sample of the content you want to analyze. This may involve selecting a random sample, a purposive sample, or a convenience sample, depending on the research question and the availability of the content.
- Develop a coding scheme: Develop a coding scheme or a set of categories to use for coding the content. The coding scheme should be based on your research question or objective and should be reliable, valid, and comprehensive.
- Train coders: Train coders to use the coding scheme and ensure that they have a clear understanding of the coding categories and procedures. You may also need to establish inter-coder reliability to ensure that different coders are coding the content consistently.
- Code the content: Code the content using the coding scheme. This may involve manually coding the content, using software, or a combination of both.
- Analyze the data: Once the content is coded, analyze the data using appropriate statistical or qualitative methods, depending on the research question and the type of data.
- Interpret the results: Interpret the results of the analysis in the context of your research question or objective. Draw conclusions based on the findings and relate them to the broader literature on the topic.
- Report your findings: Report your findings in a clear and concise manner, including the research question, methodology, results, and conclusions. Provide details about the coding scheme, inter-coder reliability, and any limitations of the study.
Applications of Content Analysis
Content analysis has numerous applications across different fields, including:
- Media Research: Content analysis is commonly used in media research to examine the representation of different groups, such as race, gender, and sexual orientation, in media content. It can also be used to study media framing, media bias, and media effects.
- Political Communication : Content analysis can be used to study political communication, including political speeches, debates, and news coverage of political events. It can also be used to study political advertising and the impact of political communication on public opinion and voting behavior.
- Marketing Research: Content analysis can be used to study advertising messages, consumer reviews, and social media posts related to products or services. It can provide insights into consumer preferences, attitudes, and behaviors.
- Health Communication: Content analysis can be used to study health communication, including the representation of health issues in the media, the effectiveness of health campaigns, and the impact of health messages on behavior.
- Education Research : Content analysis can be used to study educational materials, including textbooks, curricula, and instructional materials. It can provide insights into the representation of different topics, perspectives, and values.
- Social Science Research: Content analysis can be used in a wide range of social science research, including studies of social media, online communities, and other forms of digital communication. It can also be used to study interviews, focus groups, and other qualitative data sources.
Examples of Content Analysis
Here are some examples of content analysis:
- Media Representation of Race and Gender: A content analysis could be conducted to examine the representation of different races and genders in popular media, such as movies, TV shows, and news coverage.
- Political Campaign Ads : A content analysis could be conducted to study political campaign ads and the themes and messages used by candidates.
- Social Media Posts: A content analysis could be conducted to study social media posts related to a particular topic, such as the COVID-19 pandemic, to examine the attitudes and beliefs of social media users.
- Instructional Materials: A content analysis could be conducted to study the representation of different topics and perspectives in educational materials, such as textbooks and curricula.
- Product Reviews: A content analysis could be conducted to study product reviews on e-commerce websites, such as Amazon, to identify common themes and issues mentioned by consumers.
- News Coverage of Health Issues: A content analysis could be conducted to study news coverage of health issues, such as vaccine hesitancy, to identify common themes and perspectives.
- Online Communities: A content analysis could be conducted to study online communities, such as discussion forums or social media groups, to understand the language, attitudes, and beliefs of the community members.
Purpose of Content Analysis
The purpose of content analysis is to systematically analyze and interpret the content of various forms of communication, such as written, oral, or visual, to identify patterns, themes, and meanings. Content analysis is used to study communication in a wide range of fields, including media studies, political science, psychology, education, sociology, and marketing research. The primary goals of content analysis include:
- Describing and summarizing communication: Content analysis can be used to describe and summarize the content of communication, such as the themes, topics, and messages conveyed in media content, political speeches, or social media posts.
- Identifying patterns and trends: Content analysis can be used to identify patterns and trends in communication, such as changes over time, differences between groups, or common themes or motifs.
- Exploring meanings and interpretations: Content analysis can be used to explore the meanings and interpretations of communication, such as the underlying values, beliefs, and assumptions that shape the content.
- Testing hypotheses and theories : Content analysis can be used to test hypotheses and theories about communication, such as the effects of media on attitudes and behaviors or the framing of political issues in the media.
When to use Content Analysis
Content analysis is a useful method when you want to analyze and interpret the content of various forms of communication, such as written, oral, or visual. Here are some specific situations where content analysis might be appropriate:
- When you want to study media content: Content analysis is commonly used in media studies to analyze the content of TV shows, movies, news coverage, and other forms of media.
- When you want to study political communication : Content analysis can be used to study political speeches, debates, news coverage, and advertising.
- When you want to study consumer attitudes and behaviors: Content analysis can be used to analyze product reviews, social media posts, and other forms of consumer feedback.
- When you want to study educational materials : Content analysis can be used to analyze textbooks, instructional materials, and curricula.
- When you want to study online communities: Content analysis can be used to analyze discussion forums, social media groups, and other forms of online communication.
- When you want to test hypotheses and theories : Content analysis can be used to test hypotheses and theories about communication, such as the framing of political issues in the media or the effects of media on attitudes and behaviors.
Characteristics of Content Analysis
Content analysis has several key characteristics that make it a useful research method. These include:
- Objectivity : Content analysis aims to be an objective method of research, meaning that the researcher does not introduce their own biases or interpretations into the analysis. This is achieved by using standardized and systematic coding procedures.
- Systematic: Content analysis involves the use of a systematic approach to analyze and interpret the content of communication. This involves defining the research question, selecting the sample of content to analyze, developing a coding scheme, and analyzing the data.
- Quantitative : Content analysis often involves counting and measuring the occurrence of specific themes or topics in the content, making it a quantitative research method. This allows for statistical analysis and generalization of findings.
- Contextual : Content analysis considers the context in which the communication takes place, such as the time period, the audience, and the purpose of the communication.
- Iterative : Content analysis is an iterative process, meaning that the researcher may refine the coding scheme and analysis as they analyze the data, to ensure that the findings are valid and reliable.
- Reliability and validity : Content analysis aims to be a reliable and valid method of research, meaning that the findings are consistent and accurate. This is achieved through inter-coder reliability tests and other measures to ensure the quality of the data and analysis.
Advantages of Content Analysis
There are several advantages to using content analysis as a research method, including:
- Objective and systematic : Content analysis aims to be an objective and systematic method of research, which reduces the likelihood of bias and subjectivity in the analysis.
- Large sample size: Content analysis allows for the analysis of a large sample of data, which increases the statistical power of the analysis and the generalizability of the findings.
- Non-intrusive: Content analysis does not require the researcher to interact with the participants or disrupt their natural behavior, making it a non-intrusive research method.
- Accessible data: Content analysis can be used to analyze a wide range of data types, including written, oral, and visual communication, making it accessible to researchers across different fields.
- Versatile : Content analysis can be used to study communication in a wide range of contexts and fields, including media studies, political science, psychology, education, sociology, and marketing research.
- Cost-effective: Content analysis is a cost-effective research method, as it does not require expensive equipment or participant incentives.
Limitations of Content Analysis
While content analysis has many advantages, there are also some limitations to consider, including:
- Limited contextual information: Content analysis is focused on the content of communication, which means that contextual information may be limited. This can make it difficult to fully understand the meaning behind the communication.
- Limited ability to capture nonverbal communication : Content analysis is limited to analyzing the content of communication that can be captured in written or recorded form. It may miss out on nonverbal communication, such as body language or tone of voice.
- Subjectivity in coding: While content analysis aims to be objective, there may be subjectivity in the coding process. Different coders may interpret the content differently, which can lead to inconsistent results.
- Limited ability to establish causality: Content analysis is a correlational research method, meaning that it cannot establish causality between variables. It can only identify associations between variables.
- Limited generalizability: Content analysis is limited to the data that is analyzed, which means that the findings may not be generalizable to other contexts or populations.
- Time-consuming: Content analysis can be a time-consuming research method, especially when analyzing a large sample of data. This can be a disadvantage for researchers who need to complete their research in a short amount of time.
About the author
Muhammad Hassan
Researcher, Academic Writer, Web developer
You may also like
Data Analysis – Process, Methods and Types
Multidimensional Scaling – Types, Formulas and...
Histogram – Types, Examples and Making Guide
Framework Analysis – Method, Types and Examples
ANOVA (Analysis of variance) – Formulas, Types...
Uniform Histogram – Purpose, Examples and Guide
An official website of the United States government
Official websites use .gov A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS A lock ( Lock Locked padlock icon ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.
- Publications
- Account settings
- Advanced Search
- Journal List
A hands-on guide to doing content analysis
Christen erlingsson, petra brysiewicz.
- Author information
- Article notes
- Copyright and License information
Corresponding author. [email protected]
Received 2017 Feb 21; Revised 2017 May 6; Accepted 2017 Aug 4; Issue date 2017 Sep.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
There is a growing recognition for the important role played by qualitative research and its usefulness in many fields, including the emergency care context in Africa. Novice qualitative researchers are often daunted by the prospect of qualitative data analysis and thus may experience much difficulty in the data analysis process. Our objective with this manuscript is to provide a practical hands-on example of qualitative content analysis to aid novice qualitative researchers in their task.
Keywords: Qualitative research, Qualitative data analysis, Content analysis
African relevance
Qualitative research is useful to deepen the understanding of the human experience.
Novice qualitative researchers may benefit from this hands-on guide to content analysis.
Practical tips and data analysis templates are provided to assist in the analysis process.
Introduction
There is a growing recognition for the important role played by qualitative research and its usefulness in many fields, including emergency care research. An increasing number of health researchers are currently opting to use various qualitative research approaches in exploring and describing complex phenomena, providing textual accounts of individuals’ “life worlds”, and giving voice to vulnerable populations our patients so often represent. Many articles and books are available that describe qualitative research methods and provide overviews of content analysis procedures [1] , [2] , [3] , [4] , [5] , [6] , [7] , [8] , [9] , [10] . Some articles include step-by-step directions intended to clarify content analysis methodology. What we have found in our teaching experience is that these directions are indeed very useful. However, qualitative researchers, especially novice researchers, often struggle to understand what is happening on and between steps, i.e., how the steps are taken.
As research supervisors of postgraduate health professionals, we often meet students who present brilliant ideas for qualitative studies that have potential to fill current gaps in the literature. Typically, the suggested studies aim to explore human experience. Research questions exploring human experience are expediently studied through analysing textual data e.g., collected in individual interviews, focus groups, documents, or documented participant observation. When reflecting on the proposed study aim together with the student, we often suggest content analysis methodology as the best fit for the study and the student, especially the novice researcher. The interview data are collected and the content analysis adventure begins. Students soon realise that data based on human experiences are complex, multifaceted and often carry meaning on multiple levels.
For many novice researchers, analysing qualitative data is found to be unexpectedly challenging and time-consuming. As they soon discover, there is no step-wise analysis process that can be applied to the data like a pattern cutter at a textile factory. They may become extremely annoyed and frustrated during the hands-on enterprise of qualitative content analysis.
The novice researcher may lament, “I’ve read all the methodology but don’t really know how to start and exactly what to do with my data!” They grapple with qualitative research terms and concepts, for example; differences between meaning units, codes, categories and themes, and regarding increasing levels of abstraction from raw data to categories or themes. The content analysis adventure may now seem to be a chaotic undertaking. But, life is messy, complex and utterly fascinating. Experiencing chaos during analysis is normal. Good advice for the qualitative researcher is to be open to the complexity in the data and utilise one’s flow of creativity.
Inspired primarily by descriptions of “conventional content analysis” in Hsieh and Shannon [3] , “inductive content analysis” in Elo and Kyngäs [5] and “qualitative content analysis of an interview text” in Graneheim and Lundman [1] , we have written this paper to help the novice qualitative researcher navigate the uncertainty in-between the steps of qualitative content analysis. We will provide advice and practical tips, as well as data analysis templates, to attempt to ease frustration and hopefully, inspire readers to discover how this exciting methodology contributes to developing a deeper understanding of human experience and our professional contexts.
Overview of qualitative content analysis
Synopsis of content analysis.
A common starting point for qualitative content analysis is often transcribed interview texts. The objective in qualitative content analysis is to systematically transform a large amount of text into a highly organised and concise summary of key results. Analysis of the raw data from verbatim transcribed interviews to form categories or themes is a process of further abstraction of data at each step of the analysis; from the manifest and literal content to latent meanings ( Fig. 1 and Table 1 ).
Example of analysis leading to higher levels of abstraction; from manifest to latent content.
Glossary of terms as used in this hands-on guide to doing content analysis. *
More information found in Refs. [1] , [2] , [3] , [5]
The initial step is to read and re-read the interviews to get a sense of the whole, i.e., to gain a general understanding of what your participants are talking about. At this point you may already start to get ideas of what the main points or ideas are that your participants are expressing. Then one needs to start dividing up the text into smaller parts, namely, into meaning units. One then condenses these meaning units further. While doing this, you need to ensure that the core meaning is still retained. The next step is to label condensed meaning units by formulating codes and then grouping these codes into categories. Depending on the study’s aim and quality of the collected data, one may choose categories as the highest level of abstraction for reporting results or you can go further and create themes [1] , [2] , [3] , [5] , [8] .
Content analysis as a reflective process
You must mould the clay of the data , tapping into your intuition while maintaining a reflective understanding of how your own previous knowledge is influencing your analysis, i.e., your pre-understanding. In qualitative methodology, it is imperative to vigilantly maintain an awareness of one’s pre-understanding so that this does not influence analysis and/or results. This is the difficult balancing task of keeping a firm grip on one’s assumptions, opinions, and personal beliefs, and not letting them unconsciously steer your analysis process while simultaneously, and knowingly, utilising one’s pre-understanding to facilitate a deeper understanding of the data.
Content analysis, as in all qualitative analysis, is a reflective process. There is no “step 1, 2, 3, done!” linear progression in the analysis. This means that identifying and condensing meaning units, coding, and categorising are not one-time events. It is a continuous process of coding and categorising then returning to the raw data to reflect on your initial analysis. Are you still satisfied with the length of meaning units? Do the condensed meaning units and codes still “fit” with each other? Do the codes still fit into this particular category? Typically, a fair amount of adjusting is needed after the first analysis endeavour. For example: a meaning unit might need to be split into two meaning units in order to capture an additional core meaning; a code modified to more closely match the core meaning of the condensed meaning unit; or a category name tweaked to most accurately describe the included codes. In other words, analysis is a flexible reflective process of working and re-working your data that reveals connections and relationships. Once condensed meaning units are coded it is easier to get a bigger picture and see patterns in your codes and organise codes in categories.
Content analysis exercise
The synopsis above is representative of analysis descriptions in many content analysis articles. Although correct, such method descriptions still do not provide much support for the novice researcher during the actual analysis process. Aspiring to provide guidance and direction to support the novice, a practical example of doing the actual work of content analysis is provided in the following sections. This practical example is based on a transcribed interview excerpt that was part of a study that aimed to explore patients’ experiences of being admitted into the emergency centre ( Fig. 2 ).
Excerpt from interview text exploring “Patient’s experience of being admitted into the emergency centre”
This content analysis exercise provides instructions, tips, and advice to support the content analysis novice in a) familiarising oneself with the data and the hermeneutic spiral, b) dividing up the text into meaning units and subsequently condensing these meaning units, c) formulating codes, and d) developing categories and themes.
Familiarising oneself with the data and the hermeneutic spiral
An important initial phase in the data analysis process is to read and re-read the transcribed interview while keeping your aim in focus. Write down your initial impressions. Embrace your intuition. What is the text talking about? What stands out? How did you react while reading the text? What message did the text leave you with? In this analysis phase, you are gaining a sense of the text as a whole.
You may ask why this is important. During analysis, you will be breaking down the whole text into smaller parts. Returning to your notes with your initial impressions will help you see if your “parts” analysis is matching up with your first impressions of the “whole” text. Are your initial impressions visible in your analysis of the parts? Perhaps you need to go back and check for different perspectives. This is what is referred to as the hermeneutic spiral or hermeneutic circle. It is the process of comparing the parts to the whole to determine whether impressions of the whole verify the analysis of the parts in all phases of analysis. Each part should reflect the whole and the whole should be reflected in each part. This concept will become clearer as you start working with your data.
Dividing up the text into meaning units and condensing meaning units
You have now read the interview a number of times. Keeping your research aim and question clearly in focus, divide up the text into meaning units. Located meaning units are then condensed further while keeping the central meaning intact ( Table 2 ). The condensation should be a shortened version of the same text that still conveys the essential message of the meaning unit. Sometimes the meaning unit is already so compact that no further condensation is required. Some content analysis sources warn researchers against short meaning units, claiming that this can lead to fragmentation [1] . However, our personal experience as research supervisors has shown us that a greater problem for the novice is basing analysis on meaning units that are too large and include many meanings which are then lost in the condensation process.
Suggestion for how the exemplar interview text can be divided into meaning units and condensed meaning units ( condensations are in parentheses ).
Formulating codes
The next step is to develop codes that are descriptive labels for the condensed meaning units ( Table 3 ). Codes concisely describe the condensed meaning unit and are tools to help researchers reflect on the data in new ways. Codes make it easier to identify connections between meaning units. At this stage of analysis you are still keeping very close to your data with very limited interpretation of content. You may adjust, re-do, re-think, and re-code until you get to the point where you are satisfied that your choices are reasonable. Just as in the initial phase of getting to know your data as a whole, it is also good to write notes during coding on your impressions and reactions to the text.
Suggestions for coding of condensed meaning units.
Feeling helpless? Resigned, Powerless? “In god’s hands”? What do you think?
Worried? Feeling lost? Distraught? What do you think?
Developing categories and themes
The next step is to sort codes into categories that answer the questions who , what , when or where? One does this by comparing codes and appraising them to determine which codes seem to belong together, thereby forming a category. In other words, a category consists of codes that appear to deal with the same issue, i.e., manifest content visible in the data with limited interpretation on the part of the researcher. Category names are most often short and factual sounding.
In data that is rich with latent meaning, analysis can be carried on to create themes. In our practical example, we have continued the process of abstracting data to a higher level, from category to theme level, and developed three themes as well as an overarching theme ( Table 4 ). Themes express underlying meaning, i.e., latent content, and are formed by grouping two or more categories together. Themes are answering questions such as why , how , in what way or by what means? Therefore, theme names include verbs, adverbs and adjectives and are very descriptive or even poetic.
Suggestion for organisation of coded meaning units into categories and themes.
Some reflections and helpful tips
Understand your pre-understandings.
While conducting qualitative research, it is paramount that the researcher maintains a vigilance of non-bias during analysis. In other words, did you remain aware of your pre-understandings, i.e., your own personal assumptions, professional background, and previous experiences and knowledge? For example, did you zero in on particular aspects of the interview on account of your profession (as an emergency doctor, emergency nurse, pre-hospital professional, etc.)? Did you assume the patient’s gender? Did your assumptions affect your analysis? How about aspects of culpability; did you assume that this patient was at fault or that this patient was a victim in the crash? Did this affect how you analysed the text?
Staying aware of one’s pre-understandings is exactly as difficult as it sounds. But, it is possible and it is requisite. Focus on putting yourself and your pre-understandings in a holding pattern while you approach your data with an openness and expectation of finding new perspectives. That is the key: expect the new and be prepared to be surprised. If something in your data feels unusual, is different from what you know, atypical, or even odd – don’t by-pass it as “wrong”. Your reactions and intuitive responses are letting you know that here is something to pay extra attention to, besides the more comfortable condensing and coding of more easily recognisable meaning units.
Use your intuition
Intuition is a great asset in qualitative analysis and not to be dismissed as “unscientific”. Intuition results from tacit knowledge. Just as tacit knowledge is a hallmark of great clinicians [11] , [12] ; it is also an invaluable tool in analysis work [13] . Literally, take note of your gut reactions and intuitive guidance and remember to write these down! These notes often form a framework of possible avenues for further analysis and are especially helpful as you lift the analysis to higher levels of abstraction; from meaning units to condensed meaning units, to codes, to categories and then to the highest level of abstraction in content analysis, themes.
Aspects of coding and categorising hard to place data
All too often, the novice gets overwhelmed by interview material that deals with the general subject matter of the interview, but doesn’t seem to answer the research question. Don’t be too quick to consider such text as off topic or dross [6] . There is often data that, although not seeming to match the study aim precisely, is still important for illuminating the problem area. This can be seen in our practical example about exploring patients’ experiences of being admitted into the emergency centre. Initially the participant is describing the accident itself. While not directly answering the research question, the description is important for understanding the context of the experience of being admitted into the emergency centre. It is very common that participants will “begin at the beginning” and prologue their narratives in order to create a context that sets the scene. This type of contextual data is vital for gaining a deepened understanding of participants’ experiences.
In our practical example, the participant begins by describing the crash and the rescue, i.e., experiences leading up to and prior to admission to the emergency centre. That is why we have chosen in our analysis to code the condensed meaning unit “Ambulance staff looked worried about all the blood” as “In the ambulance” and place it in the category “Reliving the rescue”. We did not choose to include this meaning unit in the categories specifically about admission to the emergency centre itself. Do you agree with our coding choice? Would you have chosen differently?
Another common problem for the novice is deciding how to code condensed meaning units when the unit can be labelled in several different ways. At this point researchers usually groan and wish they had thought to ask one of those classic follow-up questions like “Can you tell me a little bit more about that?” We have examples of two such coding conundrums in the exemplar, as can be seen in Table 3 (codes we conferred on) and Table 4 (codes we reached consensus on). Do you agree with our choices or would you have chosen different codes? Our best advice is to go back to your impressions of the whole and lean into your intuition when choosing codes that are most reasonable and best fit your data.
A typical problem area during categorisation, especially for the novice researcher, is overlap between content in more than one initial category, i.e., codes included in one category also seem to be a fit for another category. Overlap between initial categories is very likely an indication that the jump from code to category was too big, a problem not uncommon when the data is voluminous and/or very complex. In such cases, it can be helpful to first sort codes into narrower categories, so-called subcategories. Subcategories can then be reviewed for possibilities of further aggregation into categories. In the case of a problematic coding, it is advantageous to return to the meaning unit and check if the meaning unit itself fits the category or if you need to reconsider your preliminary coding.
It is not uncommon to be faced by thorny problems such as these during coding and categorisation. Here we would like to reiterate how valuable it is to have fellow researchers with whom you can discuss and reflect together with, in order to reach consensus on the best way forward in your data analysis. It is really advantageous to compare your analysis with meaning units, condensations, coding and categorisations done by another researcher on the same text. Have you identified the same meaning units? Do you agree on coding? See similar patterns in the data? Concur on categories? Sometimes referred to as “researcher triangulation,” this is actually a key element in qualitative analysis and an important component when striving to ensure trustworthiness in your study [14] . Qualitative research is about seeking out variations and not controlling variables, as in quantitative research. Collaborating with others during analysis lets you tap into multiple perspectives and often makes it easier to see variations in the data, thereby enhancing the quality of your results as well as contributing to the rigor of your study. It is important to note that it is not necessary to force consensus in the findings but one can embrace these variations in interpretation and use that to capture the richness in the data.
Yet there are times when neither openness, pre-understanding, intuition, nor researcher triangulation does the job; for example, when analysing an interview and one is simply confused on how to code certain meaning units. At such times, there are a variety of options. A good starting place is to re-read all the interviews through the lens of this specific issue and actively search for other similar types of meaning units you might have missed. Another way to handle this is to conduct further interviews with specific queries that hopefully shed light on the issue. A third option is to have a follow-up interview with the same person and ask them to explain.
Additional tips
It is important to remember that in a typical project there are several interviews to analyse. Codes found in a single interview serve as a starting point as you then work through the remaining interviews coding all material. Form your categories and themes when all project interviews have been coded.
When submitting an article with your study results, it is a good idea to create a table or figure providing a few key examples of how you progressed from the raw data of meaning units, to condensed meaning units, coding, categorisation, and, if included, themes. Providing such a table or figure supports the rigor of your study [1] and is an element greatly appreciated by reviewers and research consumers.
During the analysis process, it can be advantageous to write down your research aim and questions on a sheet of paper that you keep nearby as you work. Frequently referring to your aim can help you keep focused and on track during analysis. Many find it helpful to colour code their transcriptions and write notes in the margins.
Having access to qualitative analysis software can be greatly helpful in organising and retrieving analysed data. Just remember, a computer does not analyse the data. As Jennings [15] has stated, “… it is ‘peopleware,’ not software, that analyses.” A major drawback is that qualitative analysis software can be prohibitively expensive. One way forward is to use table templates such as we have used in this article. (Three analysis templates, Templates A, B, and C, are provided as supplementary online material ). Additionally, the “find” function in word processing programmes such as Microsoft Word (Redmond, WA USA) facilitates locating key words, e.g., in transcribed interviews, meaning units, and codes.
Lessons learnt/key points
From our experience with content analysis we have learnt a number of important lessons that may be useful for the novice researcher. They are:
A method description is a guideline supporting analysis and trustworthiness. Don’t get caught up too rigidly following steps. Reflexivity and flexibility are just as important. Remember that a method description is a tool helping you in the process of making sense of your data by reducing a large amount of text to distil key results.
It is important to maintain a vigilant awareness of one’s own pre-understandings in order to avoid bias during analysis and in results.
Use and trust your own intuition during the analysis process.
If possible, discuss and reflect together with other researchers who have analysed the same data. Be open and receptive to new perspectives.
Understand that it is going to take time. Even if you are quite experienced, each set of data is different and all require time to analyse. Don’t expect to have all the data analysis done over a weekend. It may take weeks. You need time to think, reflect and then review your analysis.
Keep reminding yourself how excited you have felt about this area of research and how interesting it is. Embrace it with enthusiasm!
Let it be chaotic – have faith that some sense will start to surface. Don’t be afraid and think you will never get to the end – you will… eventually!
Peer review under responsibility of African Federation for Emergency Medicine.
Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.afjem.2017.08.001 .
Contributor Information
Christen Erlingsson, Email: [email protected].
Petra Brysiewicz, Email: [email protected].
Appendix A. Supplementary data
- 1. Graneheim U.H., Lundman B. Qualitative content analysis in nursing research: concepts, procedures, and measures to achieve trustworthiness. Nurse Educ Today. 2004;24:105–112. doi: 10.1016/j.nedt.2003.10.001. [ DOI ] [ PubMed ] [ Google Scholar ]
- 2. Mayring P. Qualitative content analysis. Forum Qual Soc Res. 2000;1(2) http://www.qualitative-research.net/fqs/ [ Google Scholar ]
- 3. Hsieh H.F., Shannon S. Three approaches to qualitative content analysis. Qual Health Res. 2005;15(9):1277–1288. doi: 10.1177/1049732305276687. [ DOI ] [ PubMed ] [ Google Scholar ]
- 4. Schilling J. On the pragmatics of qualitative assessment: designing the process for content analysis. Eur J Psychol Assess. 2006;22(1):28–37. [ Google Scholar ]
- 5. Elo S., Kyngas H. The qualitative content analysis process. J Adv Nurs. 2007;62(1):107–115. doi: 10.1111/j.1365-2648.2007.04569.x. [ DOI ] [ PubMed ] [ Google Scholar ]
- 6. Burnard P., Gill P., Stewart K., Treasure E., Chadwick B. Analysing and presenting qualitative data. Brit Dent J. 2008;204(8):429–432. doi: 10.1038/sj.bdj.2008.292. [ DOI ] [ PubMed ] [ Google Scholar ]
- 7. Berg B., Lune H. 8th ed. Pearson Education, Inc.; Upper Saddle River, NJ: 2012. Qualitative research methods for the social sciences. [ Google Scholar ]
- 8. Erlingsson C., Brysiewicz P. Orientation among multiple truths: an introduction to qualitative research. Afr J Emerg Med. 2013;3:92–99. [ Google Scholar ]
- 9. Krippendorf K. Sage; Thousand Oaks, CA: 2013. Content analysis: an introduction to its methodology. [ Google Scholar ]
- 10. Vaismoradi M., Turunen H., Bondas T. Content analysis and thematic analysis: implications for conducting a qualitative descriptive study. Nurs Health Sci. 2013;15:398–405. doi: 10.1111/nhs.12048. [ DOI ] [ PubMed ] [ Google Scholar ]
- 11. Mattingly C. What is clinical reasoning? Am J Occup Ther. 1991;45(11):979–986. doi: 10.5014/ajot.45.11.979. [ DOI ] [ PubMed ] [ Google Scholar ]
- 12. Henry S. Recognizing tacit knowledge in medical epistemology. Theor Med Bioeth. 2006;27:187–213. doi: 10.1007/s11017-006-9005-x. [ DOI ] [ PubMed ] [ Google Scholar ]
- 13. Swanwick K. Qualitative Research: The Relationship of Intuition and Analysis. Bull Council Res Music Educ. 1994;122:57–69. [ Google Scholar ]
- 14. Carter N., Bryant-Lukosius D., DiCenso A., Blythe J., Neville A.J. The use of triangulation in qualitative research. Oncol Nurs Forum. 2014;41:5. doi: 10.1188/14.ONF.545-547. [ DOI ] [ PubMed ] [ Google Scholar ]
- 15. Jennings B.M. Qualitative analysis: a case of software or ‘Peopleware?’. Res Nurs Health. 2007;30:483–484. doi: 10.1002/nur.20238. [ DOI ] [ PubMed ] [ Google Scholar ]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
- View on publisher site
- PDF (1.2 MB)
- Collections
Similar articles
Cited by other articles, links to ncbi databases.
- Download .nbib .nbib
- Format: AMA APA MLA NLM
Add to Collections
- Search Menu
- Sign in through your institution
- Browse content in Arts and Humanities
- Browse content in Archaeology
- Anglo-Saxon and Medieval Archaeology
- Archaeological Methodology and Techniques
- Archaeology by Region
- Archaeology of Religion
- Archaeology of Trade and Exchange
- Biblical Archaeology
- Contemporary and Public Archaeology
- Environmental Archaeology
- Historical Archaeology
- History and Theory of Archaeology
- Industrial Archaeology
- Landscape Archaeology
- Mortuary Archaeology
- Prehistoric Archaeology
- Underwater Archaeology
- Urban Archaeology
- Zooarchaeology
- Browse content in Architecture
- Architectural Structure and Design
- History of Architecture
- Residential and Domestic Buildings
- Theory of Architecture
- Browse content in Art
- Art Subjects and Themes
- History of Art
- Industrial and Commercial Art
- Theory of Art
- Biographical Studies
- Byzantine Studies
- Browse content in Classical Studies
- Classical History
- Classical Philosophy
- Classical Mythology
- Classical Numismatics
- Classical Literature
- Classical Reception
- Classical Art and Architecture
- Classical Oratory and Rhetoric
- Greek and Roman Papyrology
- Greek and Roman Epigraphy
- Greek and Roman Law
- Greek and Roman Archaeology
- Late Antiquity
- Religion in the Ancient World
- Social History
- Digital Humanities
- Browse content in History
- Colonialism and Imperialism
- Diplomatic History
- Environmental History
- Genealogy, Heraldry, Names, and Honours
- Genocide and Ethnic Cleansing
- Historical Geography
- History by Period
- History of Emotions
- History of Agriculture
- History of Education
- History of Gender and Sexuality
- Industrial History
- Intellectual History
- International History
- Labour History
- Legal and Constitutional History
- Local and Family History
- Maritime History
- Military History
- National Liberation and Post-Colonialism
- Oral History
- Political History
- Public History
- Regional and National History
- Revolutions and Rebellions
- Slavery and Abolition of Slavery
- Social and Cultural History
- Theory, Methods, and Historiography
- Urban History
- World History
- Browse content in Language Teaching and Learning
- Language Learning (Specific Skills)
- Language Teaching Theory and Methods
- Browse content in Linguistics
- Applied Linguistics
- Cognitive Linguistics
- Computational Linguistics
- Forensic Linguistics
- Grammar, Syntax and Morphology
- Historical and Diachronic Linguistics
- History of English
- Language Evolution
- Language Reference
- Language Acquisition
- Language Variation
- Language Families
- Lexicography
- Linguistic Anthropology
- Linguistic Theories
- Linguistic Typology
- Phonetics and Phonology
- Psycholinguistics
- Sociolinguistics
- Translation and Interpretation
- Writing Systems
- Browse content in Literature
- Bibliography
- Children's Literature Studies
- Literary Studies (Romanticism)
- Literary Studies (American)
- Literary Studies (Asian)
- Literary Studies (European)
- Literary Studies (Eco-criticism)
- Literary Studies (Modernism)
- Literary Studies - World
- Literary Studies (1500 to 1800)
- Literary Studies (19th Century)
- Literary Studies (20th Century onwards)
- Literary Studies (African American Literature)
- Literary Studies (British and Irish)
- Literary Studies (Early and Medieval)
- Literary Studies (Fiction, Novelists, and Prose Writers)
- Literary Studies (Gender Studies)
- Literary Studies (Graphic Novels)
- Literary Studies (History of the Book)
- Literary Studies (Plays and Playwrights)
- Literary Studies (Poetry and Poets)
- Literary Studies (Postcolonial Literature)
- Literary Studies (Queer Studies)
- Literary Studies (Science Fiction)
- Literary Studies (Travel Literature)
- Literary Studies (War Literature)
- Literary Studies (Women's Writing)
- Literary Theory and Cultural Studies
- Mythology and Folklore
- Shakespeare Studies and Criticism
- Browse content in Media Studies
- Browse content in Music
- Applied Music
- Dance and Music
- Ethics in Music
- Ethnomusicology
- Gender and Sexuality in Music
- Medicine and Music
- Music Cultures
- Music and Media
- Music and Religion
- Music and Culture
- Music Education and Pedagogy
- Music Theory and Analysis
- Musical Scores, Lyrics, and Libretti
- Musical Structures, Styles, and Techniques
- Musicology and Music History
- Performance Practice and Studies
- Race and Ethnicity in Music
- Sound Studies
- Browse content in Performing Arts
- Browse content in Philosophy
- Aesthetics and Philosophy of Art
- Epistemology
- Feminist Philosophy
- History of Western Philosophy
- Meta-Philosophy
- Metaphysics
- Moral Philosophy
- Non-Western Philosophy
- Philosophy of Language
- Philosophy of Mind
- Philosophy of Perception
- Philosophy of Science
- Philosophy of Action
- Philosophy of Law
- Philosophy of Religion
- Philosophy of Mathematics and Logic
- Practical Ethics
- Social and Political Philosophy
- Browse content in Religion
- Biblical Studies
- Christianity
- East Asian Religions
- History of Religion
- Judaism and Jewish Studies
- Qumran Studies
- Religion and Education
- Religion and Health
- Religion and Politics
- Religion and Science
- Religion and Law
- Religion and Art, Literature, and Music
- Religious Studies
- Browse content in Society and Culture
- Cookery, Food, and Drink
- Cultural Studies
- Customs and Traditions
- Ethical Issues and Debates
- Hobbies, Games, Arts and Crafts
- Natural world, Country Life, and Pets
- Popular Beliefs and Controversial Knowledge
- Sports and Outdoor Recreation
- Technology and Society
- Travel and Holiday
- Visual Culture
- Browse content in Law
- Arbitration
- Browse content in Company and Commercial Law
- Commercial Law
- Company Law
- Browse content in Comparative Law
- Systems of Law
- Competition Law
- Browse content in Constitutional and Administrative Law
- Government Powers
- Judicial Review
- Local Government Law
- Military and Defence Law
- Parliamentary and Legislative Practice
- Construction Law
- Contract Law
- Browse content in Criminal Law
- Criminal Procedure
- Criminal Evidence Law
- Sentencing and Punishment
- Employment and Labour Law
- Environment and Energy Law
- Browse content in Financial Law
- Banking Law
- Insolvency Law
- History of Law
- Human Rights and Immigration
- Intellectual Property Law
- Browse content in International Law
- Private International Law and Conflict of Laws
- Public International Law
- IT and Communications Law
- Jurisprudence and Philosophy of Law
- Law and Politics
- Law and Society
- Browse content in Legal System and Practice
- Courts and Procedure
- Legal Skills and Practice
- Legal System - Costs and Funding
- Primary Sources of Law
- Regulation of Legal Profession
- Medical and Healthcare Law
- Browse content in Policing
- Criminal Investigation and Detection
- Police and Security Services
- Police Procedure and Law
- Police Regional Planning
- Browse content in Property Law
- Personal Property Law
- Restitution
- Study and Revision
- Terrorism and National Security Law
- Browse content in Trusts Law
- Wills and Probate or Succession
- Browse content in Medicine and Health
- Browse content in Allied Health Professions
- Arts Therapies
- Clinical Science
- Dietetics and Nutrition
- Occupational Therapy
- Operating Department Practice
- Physiotherapy
- Radiography
- Speech and Language Therapy
- Browse content in Anaesthetics
- General Anaesthesia
- Clinical Neuroscience
- Browse content in Clinical Medicine
- Acute Medicine
- Cardiovascular Medicine
- Clinical Genetics
- Clinical Pharmacology and Therapeutics
- Dermatology
- Endocrinology and Diabetes
- Gastroenterology
- Genito-urinary Medicine
- Geriatric Medicine
- Infectious Diseases
- Medical Toxicology
- Medical Oncology
- Pain Medicine
- Palliative Medicine
- Rehabilitation Medicine
- Respiratory Medicine and Pulmonology
- Rheumatology
- Sleep Medicine
- Sports and Exercise Medicine
- Community Medical Services
- Critical Care
- Emergency Medicine
- Forensic Medicine
- Haematology
- History of Medicine
- Browse content in Medical Skills
- Clinical Skills
- Communication Skills
- Nursing Skills
- Surgical Skills
- Browse content in Medical Dentistry
- Oral and Maxillofacial Surgery
- Paediatric Dentistry
- Restorative Dentistry and Orthodontics
- Surgical Dentistry
- Medical Ethics
- Medical Statistics and Methodology
- Browse content in Neurology
- Clinical Neurophysiology
- Neuropathology
- Nursing Studies
- Browse content in Obstetrics and Gynaecology
- Gynaecology
- Occupational Medicine
- Ophthalmology
- Otolaryngology (ENT)
- Browse content in Paediatrics
- Neonatology
- Browse content in Pathology
- Chemical Pathology
- Clinical Cytogenetics and Molecular Genetics
- Histopathology
- Medical Microbiology and Virology
- Patient Education and Information
- Browse content in Pharmacology
- Psychopharmacology
- Browse content in Popular Health
- Caring for Others
- Complementary and Alternative Medicine
- Self-help and Personal Development
- Browse content in Preclinical Medicine
- Cell Biology
- Molecular Biology and Genetics
- Reproduction, Growth and Development
- Primary Care
- Professional Development in Medicine
- Browse content in Psychiatry
- Addiction Medicine
- Child and Adolescent Psychiatry
- Forensic Psychiatry
- Learning Disabilities
- Old Age Psychiatry
- Psychotherapy
- Browse content in Public Health and Epidemiology
- Epidemiology
- Public Health
- Browse content in Radiology
- Clinical Radiology
- Interventional Radiology
- Nuclear Medicine
- Radiation Oncology
- Reproductive Medicine
- Browse content in Surgery
- Cardiothoracic Surgery
- Gastro-intestinal and Colorectal Surgery
- General Surgery
- Neurosurgery
- Paediatric Surgery
- Peri-operative Care
- Plastic and Reconstructive Surgery
- Surgical Oncology
- Transplant Surgery
- Trauma and Orthopaedic Surgery
- Vascular Surgery
- Browse content in Science and Mathematics
- Browse content in Biological Sciences
- Aquatic Biology
- Biochemistry
- Bioinformatics and Computational Biology
- Developmental Biology
- Ecology and Conservation
- Evolutionary Biology
- Genetics and Genomics
- Microbiology
- Molecular and Cell Biology
- Natural History
- Plant Sciences and Forestry
- Research Methods in Life Sciences
- Structural Biology
- Systems Biology
- Zoology and Animal Sciences
- Browse content in Chemistry
- Analytical Chemistry
- Computational Chemistry
- Crystallography
- Environmental Chemistry
- Industrial Chemistry
- Inorganic Chemistry
- Materials Chemistry
- Medicinal Chemistry
- Mineralogy and Gems
- Organic Chemistry
- Physical Chemistry
- Polymer Chemistry
- Study and Communication Skills in Chemistry
- Theoretical Chemistry
- Browse content in Computer Science
- Artificial Intelligence
- Computer Architecture and Logic Design
- Game Studies
- Human-Computer Interaction
- Mathematical Theory of Computation
- Programming Languages
- Software Engineering
- Systems Analysis and Design
- Virtual Reality
- Browse content in Computing
- Business Applications
- Computer Security
- Computer Games
- Computer Networking and Communications
- Digital Lifestyle
- Graphical and Digital Media Applications
- Operating Systems
- Browse content in Earth Sciences and Geography
- Atmospheric Sciences
- Environmental Geography
- Geology and the Lithosphere
- Maps and Map-making
- Meteorology and Climatology
- Oceanography and Hydrology
- Palaeontology
- Physical Geography and Topography
- Regional Geography
- Soil Science
- Urban Geography
- Browse content in Engineering and Technology
- Agriculture and Farming
- Biological Engineering
- Civil Engineering, Surveying, and Building
- Electronics and Communications Engineering
- Energy Technology
- Engineering (General)
- Environmental Science, Engineering, and Technology
- History of Engineering and Technology
- Mechanical Engineering and Materials
- Technology of Industrial Chemistry
- Transport Technology and Trades
- Browse content in Environmental Science
- Applied Ecology (Environmental Science)
- Conservation of the Environment (Environmental Science)
- Environmental Sustainability
- Environmentalist Thought and Ideology (Environmental Science)
- Management of Land and Natural Resources (Environmental Science)
- Natural Disasters (Environmental Science)
- Nuclear Issues (Environmental Science)
- Pollution and Threats to the Environment (Environmental Science)
- Social Impact of Environmental Issues (Environmental Science)
- History of Science and Technology
- Browse content in Materials Science
- Ceramics and Glasses
- Composite Materials
- Metals, Alloying, and Corrosion
- Nanotechnology
- Browse content in Mathematics
- Applied Mathematics
- Biomathematics and Statistics
- History of Mathematics
- Mathematical Education
- Mathematical Finance
- Mathematical Analysis
- Numerical and Computational Mathematics
- Probability and Statistics
- Pure Mathematics
- Browse content in Neuroscience
- Cognition and Behavioural Neuroscience
- Development of the Nervous System
- Disorders of the Nervous System
- History of Neuroscience
- Invertebrate Neurobiology
- Molecular and Cellular Systems
- Neuroendocrinology and Autonomic Nervous System
- Neuroscientific Techniques
- Sensory and Motor Systems
- Browse content in Physics
- Astronomy and Astrophysics
- Atomic, Molecular, and Optical Physics
- Biological and Medical Physics
- Classical Mechanics
- Computational Physics
- Condensed Matter Physics
- Electromagnetism, Optics, and Acoustics
- History of Physics
- Mathematical and Statistical Physics
- Measurement Science
- Nuclear Physics
- Particles and Fields
- Plasma Physics
- Quantum Physics
- Relativity and Gravitation
- Semiconductor and Mesoscopic Physics
- Browse content in Psychology
- Affective Sciences
- Clinical Psychology
- Cognitive Psychology
- Cognitive Neuroscience
- Criminal and Forensic Psychology
- Developmental Psychology
- Educational Psychology
- Evolutionary Psychology
- Health Psychology
- History and Systems in Psychology
- Music Psychology
- Neuropsychology
- Organizational Psychology
- Psychological Assessment and Testing
- Psychology of Human-Technology Interaction
- Psychology Professional Development and Training
- Research Methods in Psychology
- Social Psychology
- Browse content in Social Sciences
- Browse content in Anthropology
- Anthropology of Religion
- Human Evolution
- Medical Anthropology
- Physical Anthropology
- Regional Anthropology
- Social and Cultural Anthropology
- Theory and Practice of Anthropology
- Browse content in Business and Management
- Business Ethics
- Business Strategy
- Business History
- Business and Technology
- Business and Government
- Business and the Environment
- Comparative Management
- Corporate Governance
- Corporate Social Responsibility
- Entrepreneurship
- Health Management
- Human Resource Management
- Industrial and Employment Relations
- Industry Studies
- Information and Communication Technologies
- International Business
- Knowledge Management
- Management and Management Techniques
- Operations Management
- Organizational Theory and Behaviour
- Pensions and Pension Management
- Public and Nonprofit Management
- Social Issues in Business and Management
- Strategic Management
- Supply Chain Management
- Browse content in Criminology and Criminal Justice
- Criminal Justice
- Criminology
- Forms of Crime
- International and Comparative Criminology
- Youth Violence and Juvenile Justice
- Development Studies
- Browse content in Economics
- Agricultural, Environmental, and Natural Resource Economics
- Asian Economics
- Behavioural Finance
- Behavioural Economics and Neuroeconomics
- Econometrics and Mathematical Economics
- Economic History
- Economic Systems
- Economic Methodology
- Economic Development and Growth
- Financial Markets
- Financial Institutions and Services
- General Economics and Teaching
- Health, Education, and Welfare
- History of Economic Thought
- International Economics
- Labour and Demographic Economics
- Law and Economics
- Macroeconomics and Monetary Economics
- Microeconomics
- Public Economics
- Urban, Rural, and Regional Economics
- Welfare Economics
- Browse content in Education
- Adult Education and Continuous Learning
- Care and Counselling of Students
- Early Childhood and Elementary Education
- Educational Equipment and Technology
- Educational Research Methodology
- Educational Strategies and Policy
- Higher and Further Education
- Organization and Management of Education
- Philosophy and Theory of Education
- Schools Studies
- Secondary Education
- Teaching of a Specific Subject
- Teaching of Specific Groups and Special Educational Needs
- Teaching Skills and Techniques
- Browse content in Environment
- Applied Ecology (Social Science)
- Climate Change
- Conservation of the Environment (Social Science)
- Environmentalist Thought and Ideology (Social Science)
- Management of Land and Natural Resources (Social Science)
- Natural Disasters (Environment)
- Pollution and Threats to the Environment (Social Science)
- Social Impact of Environmental Issues (Social Science)
- Sustainability
- Browse content in Human Geography
- Cultural Geography
- Economic Geography
- Political Geography
- Browse content in Interdisciplinary Studies
- Communication Studies
- Museums, Libraries, and Information Sciences
- Browse content in Politics
- African Politics
- Asian Politics
- Chinese Politics
- Comparative Politics
- Conflict Politics
- Elections and Electoral Studies
- Environmental Politics
- Ethnic Politics
- European Union
- Foreign Policy
- Gender and Politics
- Human Rights and Politics
- Indian Politics
- International Relations
- International Organization (Politics)
- International Political Economy
- Irish Politics
- Latin American Politics
- Middle Eastern Politics
- Political Behaviour
- Political Economy
- Political Institutions
- Political Methodology
- Political Communication
- Political Philosophy
- Political Sociology
- Political Theory
- Politics and Religion
- Politics and Law
- Politics of Development
- Public Policy
- Public Administration
- Qualitative Political Methodology
- Quantitative Political Methodology
- Regional Political Studies
- Russian Politics
- Security Studies
- State and Local Government
- UK Politics
- US Politics
- Browse content in Regional and Area Studies
- African Studies
- Asian Studies
- East Asian Studies
- Japanese Studies
- Latin American Studies
- Middle Eastern Studies
- Native American Studies
- Scottish Studies
- Browse content in Research and Information
- Research Methods
- Browse content in Social Work
- Addictions and Substance Misuse
- Adoption and Fostering
- Care of the Elderly
- Child and Adolescent Social Work
- Couple and Family Social Work
- Direct Practice and Clinical Social Work
- Emergency Services
- Human Behaviour and the Social Environment
- International and Global Issues in Social Work
- Mental and Behavioural Health
- Social Justice and Human Rights
- Social Policy and Advocacy
- Social Work and Crime and Justice
- Social Work Macro Practice
- Social Work Practice Settings
- Social Work Research and Evidence-based Practice
- Welfare and Benefit Systems
- Browse content in Sociology
- Childhood Studies
- Community Development
- Comparative and Historical Sociology
- Disability Studies
- Economic Sociology
- Gender and Sexuality
- Gerontology and Ageing
- Health, Illness, and Medicine
- Marriage and the Family
- Migration Studies
- Occupations, Professions, and Work
- Organizations
- Population and Demography
- Race and Ethnicity
- Social Theory
- Social Movements and Social Change
- Social Research and Statistics
- Social Stratification, Inequality, and Mobility
- Sociology of Religion
- Sociology of Education
- Sport and Leisure
- Urban and Rural Studies
- Browse content in Warfare and Defence
- Defence Strategy, Planning, and Research
- Land Forces and Warfare
- Military Administration
- Military Life and Institutions
- Naval Forces and Warfare
- Other Warfare and Defence Issues
- Peace Studies and Conflict Resolution
- Weapons and Equipment
- < Previous chapter
- Next chapter >
19 Content Analysis
Lindsay Prior, School of Sociology, Social Policy, and Social Work, Queen's University
- Published: 02 September 2020
- Cite Icon Cite
- Permissions Icon Permissions
In this chapter, the focus is on ways in which content analysis can be used to investigate and describe interview and textual data. The chapter opens with a contextualization of the method and then proceeds to an examination of the role of content analysis in relation to both quantitative and qualitative modes of social research. Following the introductory sections, four kinds of data are subjected to content analysis. These include data derived from a sample of qualitative interviews ( N = 54), textual data derived from a sample of health policy documents ( N = 6), data derived from a single interview relating to a “case” of traumatic brain injury, and data gathered from fifty-four abstracts of academic papers on the topic of “well-being.” Using a distinctive and somewhat novel style of content analysis that calls on the notion of semantic networks, the chapter shows how the method can be used either independently or in conjunction with other forms of inquiry (including various styles of discourse analysis) to analyze data and also how it can be used to verify and underpin claims that arise from analysis. The chapter ends with an overview of the different ways in which the study of “content”—especially the study of document content—can be positioned in social scientific research projects.
What Is Content Analysis?
In his 1952 text on the subject of content analysis, Bernard Berelson traced the origins of the method to communication research and then listed what he called six distinguishing features of the approach. As one might expect, the six defining features reflect the concerns of social science as taught in the 1950s, an age in which the calls for an “objective,” “systematic,” and “quantitative” approach to the study of communication data were first heard. The reference to the field of “communication” was nothing less than a reflection of a substantive social scientific interest over the previous decades in what was called public opinion and specifically attempts to understand why and how a potential source of critical, rational judgment on political leaders (i.e., the views of the public) could be turned into something to be manipulated by dictators and demagogues. In such a context, it is perhaps not so surprising that in one of the more popular research methods texts of the decade, the terms content analysis and communication analysis are used interchangeably (see Goode & Hatt, 1952 , p. 325).
Academic fashions and interests naturally change with available technology, and these days we are more likely to focus on the individualization of communications through Twitter and the like, rather than of mass newspaper readership or mass radio audiences, yet the prevailing discourse on content analysis has remained much the same as it was in Berleson’s day. Thus, Neuendorf ( 2002 ), for example, continued to define content analysis as “the systematic, objective, quantitative analysis of message characteristics” (p. 1). Clearly, the centrality of communication as a basis for understanding and using content analysis continues to hold, but in this chapter I will try to show that, rather than locate the use of content analysis in disembodied “messages” and distantiated “media,” we would do better to focus on the fact that communication is a building block of social life itself and not merely a system of messages that are transmitted—in whatever form—from sender to receiver. To put that statement in another guise, we must note that communicative action (to use the phraseology of Habermas, 1987 ) rests at the very base of the lifeworld, and one very important way of coming to grips with that world is to study the content of what people say and write in the course of their everyday lives.
My aim is to demonstrate various ways in which content analysis (henceforth CTA) can be used and developed to analyze social scientific data as derived from interviews and documents. It is not my intention to cover the history of CTA or to venture into forms of literary analysis or to demonstrate each and every technique that has ever been deployed by content analysts. (Many of the standard textbooks deal with those kinds of issues much more fully than is possible here. See, for example, Babbie, 2013 ; Berelson, 1952 ; Bryman, 2008 , Krippendorf, 2004 ; Neuendorf, 2002 ; and Weber, 1990 ). Instead, I seek to recontextualize the use of the method in a framework of network thinking and to link the use of CTA to specific problems of data analysis. As will become evident, my exposition of the method is grounded in real-world problems. Those problems are drawn from my own research projects and tend to reflect my academic interests—which are almost entirely related to the analysis of the ways in which people talk and write about aspects of health, illness, and disease. However, lest the reader be deterred from going any further, I should emphasize that the substantive issues that I elect to examine are secondary if not tertiary to my main objective—which is to demonstrate how CTA can be integrated into a range of research designs and add depth and rigor to the analysis of interview and inscription data. To that end, in the next section I aim to clear our path to analysis by dealing with some issues that touch on the general position of CTA in the research armory, especially its location in the schism that has developed between quantitative and qualitative modes of inquiry.
The Methodological Context of Content Analysis
Content analysis is usually associated with the study of inscription contained in published reports, newspapers, adverts, books, web pages, journals, and other forms of documentation. Hence, nearly all of Berelson’s ( 1952 ) illustrations and references to the method relate to the analysis of written records of some kind, and where speech is mentioned, it is almost always in the form of broadcast and published political speeches (such as State of the Union addresses). This association of content analysis with text and documentation is further underlined in modern textbook discussions of the method. Thus, Bryman ( 2008 ), for example, defined CTA as “an approach to the analysis of documents and texts , that seek to quantify content in terms of pre-determined categories” (2008, p. 274, emphasis in original), while Babbie ( 2013 ) stated that CTA is “the study of recorded human communications” (2013, p. 295), and Weber referred to it as a method to make “valid inferences from text” (1990, p. 9). It is clear then that CTA is viewed as a text-based method of analysis, though extensions of the method to other forms of inscriptional material are also referred to in some discussions. Thus, Neuendorf ( 2002 ), for example, rightly referred to analyses of film and television images as legitimate fields for the deployment of CTA and by implication analyses of still—as well as moving—images such as photographs and billboard adverts. Oddly, in the traditional or standard paradigm of CTA, the method is solely used to capture the “message” of a text or speech; it is not used for the analysis of a recipient’s response to or understanding of the message (which is normally accessed via interview data and analyzed in other and often less rigorous ways; see, e.g., Merton, 1968 ). So, in this chapter I suggest that we can take things at least one small step further by using CTA to analyze speech (especially interview data) as well as text.
Standard textbook discussions of CTA usually refer to it as a “nonreactive” or “unobtrusive” method of investigation (see, e.g., Babbie, 2013 , p. 294), and a large part of the reason for that designation is because of its focus on already existing text (i.e., text gathered without intrusion into a research setting). More important, however (and to underline the obvious), CTA is primarily a method of analysis rather than of data collection. Its use, therefore, must be integrated into wider frames of research design that embrace systematic forms of data collection as well as forms of data analysis. Thus, routine strategies for sampling data are often required in designs that call on CTA as a method of analysis. These latter can be built around random sampling methods or even techniques of “theoretical sampling” (Glaser & Strauss, 1967 ) so as to identify a suitable range of materials for CTA. Content analysis can also be linked to styles of ethnographic inquiry and to the use of various purposive or nonrandom sampling techniques. For an example, see Altheide ( 1987 ).
The use of CTA in a research design does not preclude the use of other forms of analysis in the same study, because it is a technique that can be deployed in parallel with other methods or with other methods sequentially. For example, and as I will demonstrate in the following sections, one might use CTA as a preliminary analytical strategy to get a grip on the available data before moving into specific forms of discourse analysis. In this respect, it can be as well to think of using CTA in, say, the frame of a priority/sequence model of research design as described by Morgan ( 1998 ).
As I shall explain, there is a sense in which CTA rests at the base of all forms of qualitative data analysis, yet the paradox is that the analysis of content is usually considered a quantitative (numerically based) method. In terms of the qualitative/quantitative divide, however, it is probably best to think of CTA as a hybrid method, and some writers have in the past argued that it is necessarily so (Kracauer, 1952 ). That was probably easier to do in an age when many recognized the strictly drawn boundaries between qualitative and quantitative styles of research to be inappropriate. Thus, in their widely used text Methods in Social Research , Goode and Hatt ( 1952 ), for example, asserted that “modern research must reject as a false dichotomy the separation between ‘qualitative’ and ‘quantitative’ studies, or between the ‘statistical’ and the ‘non-statistical’ approach” (p. 313). This position was advanced on the grounds that all good research must meet adequate standards of validity and reliability, whatever its style, and the message is well worth preserving. However, there is a more fundamental reason why it is nonsensical to draw a division between the qualitative and the quantitative. It is simply this: All acts of social observation depend on the deployment of qualitative categories—whether gender, class, race, or even age; there is no descriptive category in use in the social sciences that connects to a world of “natural kinds.” In short, all categories are made, and therefore when we seek to count “things” in the world, we are dependent on the existence of socially constructed divisions. How the categories take the shape that they do—how definitions are arrived at, how inclusion and exclusion criteria are decided on, and how taxonomic principles are deployed—constitute interesting research questions in themselves. From our starting point, however, we need only note that “sorting things out” (to use a phrase from Bowker & Star, 1999 ) and acts of “counting”—whether it be of chromosomes or people (Martin & Lynch, 2009 )—are activities that connect to the social world of organized interaction rather than to unsullied observation of the external world.
Some writers deny the strict division between the qualitative and quantitative on grounds of empirical practice rather than of ontological reasoning. For example, Bryman ( 2008 ) argued that qualitative researchers also call on quantitative thinking, but tend to use somewhat vague, imprecise terms rather than numbers and percentages—referring to frequencies via the use of phrases such as “more than” and “less than.” Kracauer ( 1952 ) advanced various arguments against the view that CTA was strictly a quantitative method, suggesting that very often we wished to assess content as being negative or positive with respect to some political, social, or economic thesis and that such evaluations could never be merely statistical. He further argued that we often wished to study “underlying” messages or latent content of documentation and that, in consequence, we needed to interpret content as well as count items of content. Morgan ( 1993 ) argued that, given the emphasis that is placed on “coding” in almost all forms of qualitative data analysis, the deployment of counting techniques is essential and we ought therefore to think in terms of what he calls qualitative as well as quantitative content analysis. Naturally, some of these positions create more problems than they seemingly solve (as is the case with considerations of “latent content”), but given the 21st-century predilection for mixed methods research (Creswell, 2007 ), it is clear that CTA has a role to play in integrating quantitative and qualitative modes of analysis in a systematic rather than merely ad hoc and piecemeal fashion. In the sections that follow, I will provide some examples of the ways in which “qualitative” analysis can be combined with systematic modes of counting. First, however, we must focus on what is analyzed in CTA.
Units of Analysis
So, what is the unit of analysis in CTA? A brief answer is that analysis can be focused on words, sentences, grammatical structures, tenses, clauses, ratios (of, say, nouns to verbs), or even “themes.” Berelson ( 1952 ) gave examples of all of the above and also recommended a form of thematic analysis (cf., Braun & Clarke, 2006 ) as a viable option. Other possibilities include counting column length (of speeches and newspaper articles), amounts of (advertising) space, or frequency of images. For our purposes, however, it might be useful to consider a specific (and somewhat traditional) example. Here it is. It is an extract from what has turned out to be one of the most important political speeches of the current century.
Iraq continues to flaunt its hostility toward America and to support terror. The Iraqi regime has plotted to develop anthrax and nerve gas and nuclear weapons for over a decade. This is a regime that has already used poison gas to murder thousands of its own citizens, leaving the bodies of mothers huddled over their dead children. This is a regime that agreed to international inspections then kicked out the inspectors. This is a regime that has something to hide from the civilized world. States like these, and their terrorist allies, constitute an axis of evil, arming to threaten the peace of the world. By seeking weapons of mass destruction, these regimes pose a grave and growing danger. They could provide these arms to terrorists, giving them the means to match their hatred. They could attack our allies or attempt to blackmail the United States. In any of these cases, the price of indifference would be catastrophic. (George W. Bush, State of the Union address, January 29, 2002)
A number of possibilities arise for analyzing the content of a speech such as the one above. Clearly, words and sentences must play a part in any such analysis, but in addition to words, there are structural features of the speech that could also figure. For example, the extract takes the form of a simple narrative—pointing to a past, a present, and an ominous future (catastrophe)—and could therefore be analyzed as such. There are, in addition, several interesting oppositions in the speech (such as those between “regimes” and the “civilized” world), as well as a set of interconnected present participles such as “plotting,” “hiding,” “arming,” and “threatening” that are associated both with Iraq and with other states that “constitute an axis of evil.” Evidently, simple word counts would fail to capture the intricacies of a speech of this kind. Indeed, our example serves another purpose—to highlight the difficulty that often arises in dissociating CTA from discourse analysis (of which narrative analysis and the analysis of rhetoric and trope are subspecies). So how might we deal with these problems?
One approach that can be adopted is to focus on what is referenced in text and speech, that is, to concentrate on the characters or elements that are recruited into the text and to examine the ways in which they are connected or co-associated. I shall provide some examples of this form of analysis shortly. Let us merely note for the time being that in the previous example we have a speech in which various “characters”—including weapons in general, specific weapons (such as nerve gas), threats, plots, hatred, evil, and mass destruction—play a role. Be aware that we need not be concerned with the veracity of what is being said—whether it is true or false—but simply with what is in the speech and how what is in there is associated. (We may leave the task of assessing truth and falsity to the jurists). Be equally aware that it is a text that is before us and not an insight into the ex-president’s mind, or his thinking, or his beliefs, or any other subjective property that he may have possessed.
In the introductory paragraph, I made brief reference to some ideas of the German philosopher Jürgen Habermas ( 1987 ). It is not my intention here to expand on the detailed twists and turns of his claims with respect to the role of language in the “lifeworld” at this point. However, I do intend to borrow what I regard as some particularly useful ideas from his work. The first is his claim—influenced by a strong line of 20th-century philosophical thinking—that language and culture are constitutive of the lifeworld (Habermas, 1987 , p. 125), and in that sense we might say that things (including individuals and societies) are made in language. That is a simple justification for focusing on what people say rather than what they “think” or “believe” or “feel” or “mean” (all of which have been suggested at one time or another as points of focus for social inquiry and especially qualitative forms of inquiry). Second, Habermas argued that speakers and therefore hearers (and, one might add, writers and therefore readers), in what he calls their speech acts, necessarily adopt a pragmatic relation to one of three worlds: entities in the objective world, things in the social world, and elements of a subjective world. In practice, Habermas ( 1987 , p. 120) suggested all three worlds are implicated in any speech act, but that there will be a predominant orientation to one of them. To rephrase this in a crude form, when speakers engage in communication, they refer to things and facts and observations relating to external nature, to aspects of interpersonal relations, and to aspects of private inner subjective worlds (thoughts, feelings, beliefs, etc.). One of the problems with locating CTA in “communication research” has been that the communications referred to are but a special and limited form of action (often what Habermas called strategic acts). In other words, television, newspaper, video, and Internet communications are just particular forms (with particular features) of action in general. Again, we might note in passing that the adoption of the Habermassian perspective on speech acts implies that much of qualitative analysis in particular has tended to focus only on one dimension of communicative action—the subjective and private. In this respect, I would argue that it is much better to look at speeches such as George W Bush’s 2002 State of the Union address as an “account” and to examine what has been recruited into the account, and how what has been recruited is connected or co-associated, rather than use the data to form insights into his (or his adviser’s) thoughts, feelings, and beliefs.
In the sections that follow, and with an emphasis on the ideas that I have just expounded, I intend to demonstrate how CTA can be deployed to advantage in almost all forms of inquiry that call on either interview (or speech-based) data or textual data. In my first example, I will show how CTA can be used to analyze a group of interviews. In the second example, I will show how it can be used to analyze a group of policy documents. In the third, I shall focus on a single interview (a “case”), and in the fourth and final example, I will show how CTA can be used to track the biography of a concept. In each instance, I shall briefly introduce the context of the “problem” on which the research was based, outline the methods of data collection, discuss how the data were analyzed and presented, and underline the ways in which CTA has sharpened the analytical strategy.
Analyzing a Sample of Interviews: Looking at Concepts and Their Co-associations in a Semantic Network
My first example of using CTA is based on a research study that was initially undertaken in the early 2000s. It was a project aimed at understanding why older people might reject the offer to be immunized against influenza (at no cost to them). The ultimate objective was to improve rates of immunization in the study area. The first phase of the research was based on interviews with 54 older people in South Wales. The sample included people who had never been immunized, some who had refused immunization, and some who had accepted immunization. Within each category, respondents were randomly selected from primary care physician patient lists, and the data were initially analyzed “thematically” and published accordingly (Evans, Prout, Prior, Tapper-Jones, & Butler, 2007 ). A few years later, however, I returned to the same data set to look at a different question—how (older) lay people talked about colds and flu, especially how they distinguished between the two illnesses and how they understood the causes of the two illnesses (see Prior, Evans, & Prout, 2011 ). Fortunately, in the original interview schedule, we had asked people about how they saw the “differences between cold and flu” and what caused flu, so it was possible to reanalyze the data with such questions in mind. In that frame, the example that follows demonstrates not only how CTA might be used on interview data, but also how it might be used to undertake a secondary analysis of a preexisting data set (Bryman, 2008 ).
As with all talk about illness, talk about colds and flu is routinely set within a mesh of concerns—about causes, symptoms, and consequences. Such talk comprises the base elements of what has at times been referred to as the “explanatory model” of an illness (Kleinman, Eisenberg, & Good, 1978 ). In what follows, I shall focus almost entirely on issues of causation as understood from the viewpoint of older people; the analysis is based on the answers that respondents made in response to the question, “How do you think people catch flu?”
Semistructured interviews of the kind undertaken for a study such as this are widely used and are often characterized as akin to “a conversation with a purpose” (Kahn & Cannell, 1957 , p. 97). One of the problems of analyzing the consequent data is that, although the interviewer holds to a planned schedule, the respondents often reflect in a somewhat unstructured way about the topic of investigation, so it is not always easy to unravel the web of talk about, say, “causes” that occurs in the interview data. In this example, causal agents of flu, inhibiting agents, and means of transmission were often conflated by the respondents. Nevertheless, in their talk people did answer the questions that were posed, and in the study referred to here, that talk made reference to things such as “bugs” (and “germs”) as well as viruses, but the most commonly referred to causes were “the air” and the “atmosphere.” The interview data also pointed toward means of transmission as “cause”—so coughs and sneezes and mixing in crowds figured in the causal mix. Most interesting, perhaps, was the fact that lay people made a nascent distinction between facilitating factors (such as bugs and viruses) and inhibiting factors (such as being resistant, immune, or healthy), so that in the presence of the latter, the former are seen to have very little effect. Here are some shorter examples of typical question–response pairs from the original interview data.
(R:32): “How do you catch it [the flu]? Well, I take it its through ingesting and inhaling bugs from the atmosphere. Not from sort of contact or touching things. Sort of airborne bugs. Is that right?” (R:3): “I suppose it’s [the cause of flu] in the air. I think I get more diseases going to the surgery than if I stayed home. Sometimes the waiting room is packed and you’ve got little kids coughing and spluttering and people sneezing, and air conditioning I think is a killer by and large I think air conditioning in lots of these offices.” (R:46): “I think you catch flu from other people. You know in enclosed environments in air conditioning which in my opinion is the biggest cause of transferring diseases is air conditioning. Worse thing that was ever invented that was. I think so, you know. It happens on aircraft exactly the same you know.”
Alternatively, it was clear that for some people being cold, wet, or damp could also serve as a direct cause of flu; thus: Interviewer: “OK, good. How do you think you catch the flu?”
(R:39): “Ah. The 65 dollar question. Well, I would catch it if I was out in the rain and I got soaked through. Then I would get the flu. I mean my neighbour up here was soaked through and he got pneumonia and he died. He was younger than me: well, 70. And he stayed in his wet clothes and that’s fatal. Got pneumonia and died, but like I said, if I get wet, especially if I get my head wet, then I can get a nasty head cold and it could develop into flu later.”
As I suggested earlier, despite the presence of bugs and germs, viruses, the air, and wetness or dampness, “catching” the flu is not a matter of simple exposure to causative agents. Thus, some people hypothesized that within each person there is a measure of immunity or resistance or healthiness that comes into play and that is capable of counteracting the effects of external agents. For example, being “hardened” to germs and harsh weather can prevent a person getting colds and flu. Being “healthy” can itself negate the effects of any causative agents, and healthiness is often linked to aspects of “good” nutrition and diet and not smoking cigarettes. These mitigating and inhibiting factors can either mollify the effects of infection or prevent a person “catching” the flu entirely. Thus, (R:45) argued that it was almost impossible for him to catch flu or cold “cos I got all this resistance.” Interestingly, respondents often used possessive pronouns in their discussion of immunity and resistance (“my immunity” and “my resistance”)—and tended to view them as personal assets (or capital) that might be compromised by mixing with crowds.
By implication, having a weak immune system can heighten the risk of contracting colds and flu and might therefore spur one to take preventive measures, such as accepting a flu shot. Some people believe that the flu shot can cause the flu and other illnesses. An example of what might be called lay “epidemiology” (Davison, Davey-Smith, & Frankel, 1991 ) is evident in the following extract.
(R:4): “Well, now it’s coincidental you know that [my brother] died after the jab, but another friend of mine, about 8 years ago, the same happened to her. She had the jab and about six months later, she died, so I know they’re both coincidental, but to me there’s a pattern.”
Normally, results from studies such as this are presented in exactly the same way as has just been set out. Thus, the researcher highlights given themes that are said to have emerged from the data and then provides appropriate extracts from the interviews to illustrate and substantiate the relevant themes. However, one reasonable question that any critic might ask about the selected data extracts concerns the extent to which they are “representative” of the material in the data set as a whole. Maybe, for example, the author has been unduly selective in his or her use of both themes and quotations. Perhaps, as a consequence, the author has ignored or left out talk that does not fit the arguments or extracts that might be considered dull and uninteresting compared to more exotic material. And these kinds of issues and problems are certainly common to the reporting of almost all forms of qualitative research. However, the adoption of CTA techniques can help to mollify such problems. This is so because, by using CTA, we can indicate the extent to which we have used all or just some of the data, and we can provide a view of the content of the entire sample of interviews rather than just the content and flavor of merely one or two interviews. In this light, we must consider Figure 19.1 , which is based on counting the number of references in the 54 interviews to the various “causes” of the flu, though references to the flu shot (i.e., inoculation) as a cause of flu have been ignored for the purpose of this discussion. The node sizes reflect the relative importance of each cause as determined by the concept count (frequency of occurrence). The links between nodes reflect the degree to which causes are co-associated in interview talk and are calculated according to a co-occurrence index (see, e.g., SPSS, 2007 , p. 183).
What causes flu? A lay perspective. Factors listed as causes of colds and flu in 54 interviews. Node size is proportional to number of references “as causes.” Line thickness is proportional to co-occurrence of any two “causes” in the set of interviews.
Given this representation, we can immediately assess the relative importance of the different causes as referred to in the interview data. Thus, we can see that such things as (poor) “hygiene” and “foreigners” were mentioned as a potential cause of flu—but mention of hygiene and foreigners was nowhere near as important as references to “the air” or to “crowds” or to “coughs and sneezes.” In addition, we can also determine the strength of the connections that interviewees made between one cause and another. Thus, there are relatively strong links between “resistance” and “coughs and sneezes,” for example.
In fact, Figure 19.1 divides causes into the “external” and the “internal,” or the facilitating and the impeding (lighter and darker nodes). Among the former I have placed such things as crowds, coughs, sneezes, and the air, while among the latter I have included “resistance,” “immunity,” and “health.” That division is a product of my conceptualizing and interpreting the data, but whichever way we organize the findings, it is evident that talk about the causes of flu belongs in a web or mesh of concerns that would be difficult to represent using individual interview extracts alone. Indeed, it would be impossible to demonstrate how the semantics of causation belong to a culture (rather than to individuals) in any other way. In addition, I would argue that the counting involved in the construction of the diagram functions as a kind of check on researcher interpretations and provides a source of visual support for claims that an author might make about, say, the relative importance of “damp” and “air” as perceived causes of disease. Finally, the use of CTA techniques allied with aspects of conceptualization and interpretation has enabled us to approach the interview data as a set and to consider the respondents as belonging to a community, rather than regarding them merely as isolated and disconnected individuals, each with their own views. It has also enabled us to squeeze some new findings out of old data, and I would argue that it has done so with advantage. There are other advantages to using CTA to explore data sets, which I will highlight in the next section.
Analyzing a Sample of Documents: Using Content Analysis to Verify Claims
Policy analysis is a difficult business. To begin, it is never entirely clear where (social, health, economic, environmental) policy actually is. Is it in documents (as published by governments, think tanks, and research centers), in action (what people actually do), or in speech (what people say)? Perhaps it rests in a mixture of all three realms. Yet, wherever it may be, it is always possible, at the very least, to identify a range of policy texts and to focus on the conceptual or semantic webs in terms of which government officials and other agents (such as politicians) talk about the relevant policy issues. Furthermore, insofar as policy is recorded—in speeches, pamphlets, and reports—we may begin to speak of specific policies as having a history or a pedigree that unfolds through time (think, e.g., of U.S. or U.K. health policies during the Clinton years or the Obama years). And, insofar as we consider “policy” as having a biography or a history, we can also think of studying policy narratives.
Though firmly based in the world of literary theory, narrative method has been widely used for both the collection and the analysis of data concerning ways in which individuals come to perceive and understand various states of health, ill health, and disability (Frank, 1995 ; Hydén, 1997 ). Narrative techniques have also been adapted for use in clinical contexts and allied to concepts of healing (Charon, 2006 ). In both social scientific and clinical work, however, the focus is invariably on individuals and on how individuals “tell” stories of health and illness. Yet narratives can also belong to collectives—such as political parties and ethnic and religious groups—just as much as to individuals, and in the latter case there is a need to collect and analyze data that are dispersed across a much wider range of materials than can be obtained from the personal interview. In this context, Roe ( 1994 ) demonstrated how narrative method can be applied to an analysis of national budgets, animal rights, and environmental policies.
An extension of the concept of narrative to policy discourse is undoubtedly useful (Newman & Vidler, 2006 ), but how might such narratives be analyzed? What strategies can be used to unravel the form and content of a narrative, especially in circumstances where the narrative might be contained in multiple (policy) documents, authored by numerous individuals, and published across a span of time rather than in a single, unified text such as a novel? Roe ( 1994 ), unfortunately, was not in any way specific about analytical procedures, apart from offering the useful rule to “never stray too far from the data” (p. xii). So, in this example, I will outline a strategy for tackling such complexities. In essence, it is a strategy that combines techniques of linguistically (rule) based CTA with a theoretical and conceptual frame that enables us to unravel and identify the core features of a policy narrative. My substantive focus is on documents concerning health service delivery policies published from 2000 to 2009 in the constituent countries of the United Kingdom (that is, England, Scotland, Wales, and Northern Ireland—all of which have different political administrations).
Narratives can be described and analyzed in various ways, but for our purposes we can say that they have three key features: they point to a chronology, they have a plot, and they contain “characters.”
All narratives have beginnings; they also have middles and endings, and these three stages are often seen as comprising the fundamental structure of narrative text. Indeed, in his masterly analysis of time and narrative, Ricoeur ( 1984 ) argued that it is in the unfolding chronological structure of a narrative that one finds its explanatory (and not merely descriptive) force. By implication, one of the simplest strategies for the examination of policy narratives is to locate and then divide a narrative into its three constituent parts—beginning, middle, and end.
Unfortunately, while it can sometimes be relatively easy to locate or choose a beginning to a narrative, it can be much more difficult to locate an end point. Thus, in any illness narrative, a narrator might be quite capable of locating the start of an illness process (in an infection, accident, or other event) but unable to see how events will be resolved in an ongoing and constantly unfolding life. As a consequence, both narrators and researchers usually find themselves in the midst of an emergent present—a present without a known and determinate end (see, e.g., Frank, 1995 ). Similar considerations arise in the study of policy narratives where chronology is perhaps best approached in terms of (past) beginnings, (present) middles, and projected futures.
According to Ricoeur ( 1984 ), our basic ideas about narrative are best derived from the work and thought of Aristotle, who in his Poetics sought to establish “first principles” of composition. For Ricoeur, as for Aristotle, plot ties things together. It “brings together factors as heterogeneous as agents, goals, means, interactions, circumstances, unexpected results” (p. 65) into the narrative frame. For Aristotle, it is the ultimate untying or unraveling of the plot that releases the dramatic energy of the narrative.
Characters are most commonly thought of as individuals, but they can be considered in much broader terms. Thus, the French semiotician A. J. Greimas ( 1970 ), for example, suggested that, rather than think of characters as people, it would be better to think in terms of what he called actants and of the functions that such actants fulfill within a story. In this sense, geography, climate, and capitalism can be considered characters every bit as much as aggressive wolves and Little Red Riding Hood. Further, he argued that the same character (actant) can be considered to fulfill many functions, and the same function may be performed by many characters. Whatever else, the deployment of the term actant certainly helps us to think in terms of narratives as functioning and creative structures. It also serves to widen our understanding of the ways in which concepts, ideas, and institutions, as well “things” in the material world, can influence the direction of unfolding events every bit as much as conscious human subjects. Thus, for example, the “American people,” “the nation,” “the Constitution,” “the West,” “tradition,” and “Washington” can all serve as characters in a policy story.
As I have already suggested, narratives can unfold across many media and in numerous arenas—speech and action, as well as text. Here, however, my focus is solely on official documents—all of which are U.K. government policy statements, as listed in Table 19.1 . The question is, How might CTA help us unravel the narrative frame?
It might be argued that a simple reading of any document should familiarize the researcher with elements of all three policy narrative components (plot, chronology, and character). However, in most policy research, we are rarely concerned with a single and unified text, as is the case with a novel; rather, we have multiple documents written at distinctly different times by multiple (usually anonymous) authors that notionally can range over a wide variety of issues and themes. In the full study, some 19 separate publications were analyzed across England, Wales, Scotland, and Northern Ireland.
Naturally, listing word frequencies—still less identifying co-occurrences and semantic webs in large data sets (covering hundreds of thousands of words and footnotes)—cannot be done manually, but rather requires the deployment of complex algorithms and text-mining procedures. To this end, I analyzed the 19 documents using “Text Mining for Clementine” (SPSS, 2007 ).
Text-mining procedures begin by providing an initial list of concepts based on the lexicon of the text but that can be weighted according to word frequency and that take account of elementary word associations. For example, learning disability, mental health, and performance management indicate three concepts, not six words. Using such procedures on the aforementioned documents gives the researcher an initial grip on the most important concepts in the document set of each country. Note that this is much more than a straightforward concordance analysis of the text and is more akin to what Ryan and Bernard ( 2000 ) referred to as semantic analysis and Carley ( 1993 ) has referred to as concept and mapping analysis.
So, the first task was to identify and then extract the core concepts, thus identifying what might be called “key” characters or actants in each of the policy narratives. For example, in the Scottish documents, such actants included “Scotland” and the “Scottish people,” as well as “health” and the “National Health Service (NHS),” among others, while in the Welsh documents it was “the people of Wales” and “Wales” that figured largely—thus emphasizing how national identity can play every bit as important a role in a health policy narrative as concepts such as “health,” “hospitals,” and “well-being.”
Having identified key concepts, it was then possible to track concept clusters in which particular actants or characters are embedded. Such cluster analysis is dependent on the use of co-occurrence rules and the analysis of synonyms, whereby it is possible to get a grip on the strength of the relationships between the concepts, as well as the frequency with which the concepts appear in the collected texts. In Figure 19.2 , I provide an example of a concept cluster. The diagram indicates the nature of the conceptual and semantic web in which various actants are discussed. The diagrams further indicate strong (solid line) and weaker (dashed line) connections between the various elements in any specific mix, and the numbers indicate frequency counts for the individual concepts. Using Clementine , the researcher is unable to specify in advance which clusters will emerge from the data. One cannot, for example, choose to have an NHS cluster. In that respect, these diagrams not only provide an array in terms of which concepts are located, but also serve as a check on and to some extent validation of the interpretations of the researcher. None of this tells us what the various narratives contained within the documents might be, however. They merely point to key characters and relationships both within and between the different narratives. So, having indicated the techniques used to identify the essential parts of the four policy narratives, it is now time to sketch out their substantive form.
Concept cluster for “care” in six English policy documents, 2000–2007. Line thickness is proportional to the strength co-occurrence coefficient. Node size reflects relative frequency of concept, and (numbers) refer to the frequency of concept. Solid lines indicate relationships between terms within the same cluster, and dashed lines indicate relationships between terms in different clusters.
It may be useful to note that Aristotle recommended brevity in matters of narrative—deftly summarizing the whole of the Odyssey in just seven lines. In what follows, I attempt—albeit somewhat weakly—to emulate that example by summarizing a key narrative of English health services policy in just four paragraphs. Note how the narrative unfolds in relation to the dates of publication. In the English case (though not so much in the other U.K. countries), it is a narrative that is concerned to introduce market forces into what is and has been a state-managed health service. Market forces are justified in terms of improving opportunities for the consumer (i.e., the patients in the service), and the pivot of the newly envisaged system is something called “patient choice” or “choice.” This is how the story unfolds as told through the policy documents between 2000 and 2008 (see Table 19.1 ). The citations in the following paragraphs are to the Department of Health publications (by year) listed in Table 19.1 .
The advent of the NHS in 1948 was a “seminal event” (2000, p. 8), but under successive Conservative administrations, the NHS was seriously underfunded (2006, p. 3). The (New Labour) government will invest (2000) or already has (2003, p. 4) invested extensively in infrastructure and staff, and the NHS is now on a “journey of major improvement” (2004, p. 2). But “more money is only a starting point” (2000, p. 2), and the journey is far from finished. Continuation requires some fundamental changes of “culture” (2003, p. 6). In particular, the NHS remains unresponsive to patient need, and “all too often, the individual needs and wishes are secondary to the convenience of the services that are available. This ‘one size fits all’ approach is neither responsive, equitable nor person-centred” (2003, p. 17). In short, the NHS is a 1940s system operating in a 21st-century world (2000, p. 26). Change is therefore needed across the “whole system” (2005, p. 3) of care and treatment.
Above all, we must recognize that we “live in a consumer age” (2000, p. 26). People’s expectations have changed dramatically (2006, p. 129), and people want more choice, more independence, and more control (2003, p. 12) over their affairs. Patients are no longer, and should not be considered, “passive recipients” of care (2003, p. 62), but wish to be and should be (2006, p. 81) actively “involved” in their treatments (2003, p. 38; 2005, p. 18)—indeed, engaged in a partnership (2003, p. 22) of respect with their clinicians. Furthermore, most people want a personalized service “tailor made to their individual needs” (2000, p. 17; 2003, p. 15; 2004, p. 1; 2006, p. 83)—“a service which feels personal to each and every individual within a framework of equity and good use of public money” (2003, p. 6).
To advance the necessary changes, “patient choice” must be and “will be strengthened” (2000, p. 89). “Choice” must be made to “happen” (2003), and it must be “real” (2003, p. 3; 2004, p. 5; 2005, p. 20; 2006, p. 4). Indeed, it must be “underpinned” (2003, p. 7) and “widened and deepened” (2003, p. 6) throughout the entire system of care.
If “we” expand and underpin patient choice in appropriate ways and engage patients in their treatment systems, then levels of patient satisfaction will increase (2003, p. 39), and their choices will lead to a more “efficient” (2003, p. 5; 2004, p. 2; 2006, p. 16) and effective (2003, p. 62; 2005, p. 8) use of resources. Above all, the promotion of choice will help to drive up “standards” of care and treatment (2000, p. 4; 2003, p. 12; 2004, p. 3; 2005, p. 7; 2006, p. 3). Furthermore, the expansion of choice will serve to negate the effects of the “inverse care law,” whereby those who need services most tend to get catered to the least (2000, p. 107; 2003, p. 5; 2006, p. 63), and it will thereby help in moderating the extent of health inequalities in the society in which we live. “The overall aim of all our reforms,” therefore, “is to turn the NHS from a top down monolith into a responsive service that gives the patient the best possible experience. We need to develop an NHS that is both fair to all of us, and personal to each of us” (2003, p. 5).
We can see how most—though not all—of the elements of this story are represented in Figure 19.2. In particular, we can see strong (co-occurrence) links between care and choice and how partnership, performance, control, and improvement have a prominent profile. There are some elements of the web that have a strong profile (in terms of node size and links), but to which we have not referred; access, information, primary care, and waiting times are four. As anyone well versed in English healthcare policy would know, these elements have important roles to play in the wider, consumer-driven narrative. However, by rendering the excluded as well as included elements of that wider narrative visible, the concept web provides a degree of verification on the content of the policy story as told herein and on the scope of its “coverage.”
In following through on this example, we have moved from CTA to a form of discourse analysis (in this instance, narrative analysis). That shift underlines aspects of both the versatility of CTA and some of its weaknesses—versatility in the sense that CTA can be readily combined with other methods of analysis and in the way in which the results of the CTA help us to check and verify the claims of the researcher. The weakness of the diagram compared to the narrative is that CTA on its own is a somewhat one-dimensional and static form of analysis, and while it is possible to introduce time and chronology into the diagrams, the diagrams themselves remain lifeless in the absence of some form of discursive overview. (For a fuller analysis of these data, see Prior, Hughes, & Peckham, 2012 ).
Analyzing a Single Interview: The Role of Content Analysis in a Case Study
So far, I have focused on using CTA on a sample of interviews and a sample of documents. In the first instance, I recommended CTA for its capacity to tell us something about what is seemingly central to interviewees and for demonstrating how what is said is linked (in terms of a concept network). In the second instance, I reaffirmed the virtues of co-occurrence and network relations, but this time in the context of a form of discourse analysis. I also suggested that CTA can serve an important role in the process of verification of a narrative and its academic interpretation. In this section, however, I am going to link the use of CTA to another style of research—case study—to show how CTA might be used to analyze a single “case.”
Case study is a term used in multiple and often ambiguous ways. However, Gerring ( 2004 ) defined it as “an intensive study of a single unit for the purpose of understanding a larger class of (similar) units” (p. 342). As Gerring pointed out, case study does not necessarily imply a focus on N = 1, although that is indeed the most logical number for case study research (Ragin & Becker, 1992 ). Naturally, an N of 1 can be immensely informative, and whether we like it or not, we often have only one N to study (think, e.g., of the 1986 Challenger shuttle disaster or of the 9/11 attack on the World Trade Center). In the clinical sciences, case studies are widely used to represent the “typical” features of a wider class of phenomena and often used to define a kind or syndrome (as in the field of clinical genetics). Indeed, at the risk of mouthing a tautology, one can say that the distinctive feature of case study is its focus on a case in all of its complexity—rather than on individual variables and their interrelationships, which tends to be a point of focus for large N research.
There was a time when case study was central to the science of psychology. Breuer and Freud’s (2001) famous studies of “hysteria” (originally published in 1895) provide an early and outstanding example of the genre in this respect, but as with many of the other styles of social science research, the influence of case studies waned with the rise of much more powerful investigative techniques—including experimental methods—driven by the deployment of new statistical technologies. Ideographic studies consequently gave way to the current fashion for statistically driven forms of analysis that focus on causes and cross-sectional associations between variables rather than ideographic complexity.
In the example that follows, we will look at the consequences of a traumatic brain injury (TBI) on just one individual. The analysis is based on an interview with a person suffering from such an injury, and it was one of 32 interviews carried out with people who had experienced a TBI. The objective of the original research was to develop an outcome measure for TBI that was sensitive to the sufferer’s (rather than the health professional’s) point of view. In our original study (see Morris et al., 2005 ), interviews were also undertaken with 27 carers of the injured with the intention of comparing their perceptions of TBI to those of the people for whom they cared. A sample survey was also undertaken to elicit views about TBI from a much wider population of patients than was studied via interview.
In the introduction, I referred to Habermas and the concept of the lifeworld. Lifeworld ( Lebenswelt ) is a concept that first arose from 20th-century German philosophy. It constituted a specific focus for the work of Alfred Schutz (see, e.g., Schutz & Luckman, 1974 ). Schutz ( 1974 ) described the lifeworld as “that province of reality which the wide-awake and normal adult simply takes-for-granted in an attitude of common sense” (p. 3). Indeed, it was the routine and taken-for-granted quality of such a world that fascinated Schutz. As applied to the worlds of those with head injuries, the concept has particular resonance because head injuries often result in that taken-for-granted quality being disrupted and fragmented, ending in what Russian neuropsychologist A. R. Luria ( 1975 ) once described as “shattered” worlds. As well as providing another excellent example of a case study, Luria’s work is also pertinent because he sometimes argued for a “romantic science” of brain injury—that is, a science that sought to grasp the worldview of the injured patient by paying attention to an unfolding and detailed personal “story” of the individual with the head injury as well as to the neurological changes and deficits associated with the injury itself. In what follows, I shall attempt to demonstrate how CTA might be used to underpin such an approach.
In the original research, we began analysis by a straightforward reading of the interview transcripts. Unfortunately, a simple reading of a text or an interview can, strangely, mislead the reader into thinking that some issues or themes are more important than is warranted by the contents of the text. How that comes about is not always clear, but it probably has something to do with a desire to develop “findings” and our natural capacity to overlook the familiar in favor of the unusual. For that reason alone, it is always useful to subject any text to some kind of concordance analysis—that is, generating a simple frequency list of words used in an interview or text. Given the current state of technology, one might even speak these days of using text-mining procedures such as the aforementioned Clementine to undertake such a task. By using Clementine , and as we have seen, it is also possible to measure the strength of co-occurrence links between elements (i.e., words and concepts) in the entire data set (in this example, 32 interviews), though for a single interview these aims can just as easily be achieved using much simpler, low-tech strategies.
By putting all 32 interviews into the database, several common themes emerged. For example, it was clear that “time” entered into the semantic web in a prominent manner, and it was clearly linked to such things as “change,” “injury,” “the body,” and what can only be called the “I was.” Indeed, time runs through the 32 stories in many guises, and the centrality of time is a reflection of storytelling and narrative recounting in general—chronology, as we have noted, being a defining feature of all storytelling (Ricoeur, 1984 ). Thus, sufferers both recounted the events surrounding their injury and provided accounts as to how the injuries affected their current life and future hopes. As to time present, much of the patient story circled around activities of daily living—walking, working, talking, looking, feeling, remembering, and so forth.
Understandably, the word and the concept of “injury” featured largely in the interviews, though it was a word most commonly associated with discussions of physical consequences of injury. There were many references in that respect to injured arms, legs, hands, and eyes. There were also references to “mind”—though with far less frequency than with references to the body and to body parts. Perhaps none of this is surprising. However, one of the most frequent concepts in the semantic mix was the “I was” (716 references). The statement “I was,” or “I used to” was, in turn, strongly connected to terms such as “the accident” and “change.” Interestingly, the “I was” overwhelmingly eclipsed the “I am” in the interview data (the latter with just 63 references). This focus on the “I was” appears in many guises. For example, it is often associated with the use of the passive voice: “I was struck by a car,” “I was put on the toilet,” “I was shipped from there then, transferred to [Cityville],” “I got told that I would never be able …,” “I was sat in a room,” and so forth. In short, the “I was” is often associated with things, people, and events acting on the injured person. More important, however, the appearance of the “I was” is often used to preface statements signifying a state of loss or change in the person’s course of life—that is, as an indicator for talk about the patient’s shattered world. For example, Patient 7122 stated,
The main (effect) at the moment is I’m not actually with my children, I can’t really be their mum at the moment. I was a caring Mum, but I can’t sort of do the things that I want to be able to do like take them to school. I can’t really do a lot on my own. Like crossing the roads.
Another patient stated,
Everything is completely changed. The way I was … I can’t really do anything at the moment. I mean my German, my English, everything’s gone. Job possibilities is out the window. Everything is just out of the window … I just think about it all the time actually every day you know. You know it has destroyed me anyway, but if I really think about what has happened I would just destroy myself.
Each of these quotations, in its own way, serves to emphasize how life has changed and how the patient’s world has changed. In that respect, we can say that one of the major outcomes arising from TBI may be substantial “biographical disruption” (Bury, 1982 ), whereupon key features of an individual’s life course are radically altered forever. Indeed, as Becker ( 1997 , p. 37) argued in relation to a wide array of life events, “When their health is suddenly disrupted, people are thrown into chaos. Illness challenges one’s knowledge of one’s body. It defies orderliness. People experience the time before their illness and its aftermath as two separate entities.” Indeed, this notion of a cusp in personal biography is particularly well illustrated by Luria’s patient Zasetsky; the latter often refers to being a “newborn creature” (Luria, 1975 , pp. 24, 88), a shadow of a former self (p. 25), and as having his past “wiped out” (p. 116).
However, none of this tells us about how these factors come together in the life and experience of one individual. When we focus on an entire set of interviews, we necessarily lose the rich detail of personal experience and tend instead to rely on a conceptual rather than a graphic description of effects and consequences (to focus on, say, “memory loss,” rather than loss of memory about family life). The contents of Figure 19.3 attempt to correct that vision. Figure 19.3 records all the things that a particular respondent (Patient 7011) used to do and liked doing. It records all the things that he says he can no longer do (at 1 year after injury), and it records all the consequences that he suffered from his head injury at the time of the interview. Thus, we see references to epilepsy (his “fits”), paranoia (the patient spoke of his suspicions concerning other people, people scheming behind his back, and his inability to trust others), deafness, depression, and so forth. Note that, although I have inserted a future tense into the web (“I will”), such a statement never appeared in the transcript. I have set it there for emphasis and to show how, for this person, the future fails to connect to any of the other features of his world except in a negative way. Thus, he states at one point that he cannot think of the future because it makes him feel depressed (see Figure 19.3 ). The line thickness of the arcs reflects the emphasis that the subject placed on the relevant “outcomes” in relation to the “I was” and the “now” during the interview. Thus, we see that factors affecting his concentration and balance loom large, but that he is also concerned about his being dependent on others, his epileptic fits, and his being unable to work and drive a vehicle. The schism in his life between what he used to do, what he cannot now do, and his current state of being is nicely represented in the CTA diagram.
The shattered world of Patient 7011. Thickness of lines (arcs) is proportional to the frequency of reference to the “outcome” by the patient during the interview.
What have we gained from executing this kind of analysis? For a start, we have moved away from a focus on variables, frequencies, and causal connections (e.g., a focus on the proportion of people with TBI who suffer from memory problems or memory problems and speech problems) and refocused on how the multiple consequences of a TBI link together in one person. In short, instead of developing a narrative of acting variables, we have emphasized a narrative of an acting individual (Abbott, 1992 , p. 62). Second, it has enabled us to see how the consequences of a TBI connect to an actual lifeworld (and not simply an injured body). So the patient is not viewed just as having a series of discrete problems such as balancing, or staying awake, which is the usual way of assessing outcomes, but as someone struggling to come to terms with an objective world of changed things, people, and activities (missing work is not, for example, routinely considered an outcome of head injury). Third, by focusing on what the patient was saying, we gain insight into something that is simply not visible by concentrating on single outcomes or symptoms alone—namely, the void that rests at the center of the interview, what I have called the “I was.” Fourth, we have contributed to understanding a type, because the case that we have read about is not simply a case of “John” or “Jane” but a case of TBI, and in that respect it can add to many other accounts of what it is like to experience head injury—including one of the most well documented of all TBI cases, that of Zatetsky. Finally, we have opened up the possibility of developing and comparing cognitive maps (Carley, 1993 ) for different individuals and thereby gained insight into how alternative cognitive frames of the world arise and operate.
Tracing the Biography of a Concept
In the previous sections, I emphasized the virtues of CTA for its capacity to link into a data set in its entirety—and how the use of CTA can counter any tendency of a researcher to be selective and partial in the presentation and interpretation of information contained in interviews and documents. However, that does not mean that we always must take an entire document or interview as the data source. Indeed, it is possible to select (on rational and explicit grounds) sections of documentation and to conduct the CTA on the chosen portions. In the example that follows, I do just that. The sections that I chose to concentrate on are titles and abstracts of academic papers—rather than the full texts. The research on which the following is based is concerned with a biography of a concept and is being conducted in conjunction with a Ph.D. student of mine, Joanne Wilson. Joanne thinks of this component of the study more in terms of a “scoping study” than of a biographical study, and that, too, is a useful framework for structuring the context in which CTA can be used. Scoping studies (Arksey & O’Malley, 2005 ) are increasingly used in health-related research to “map the field” and to get a sense of the range of work that has been conducted on a given topic. Such studies can also be used to refine research questions and research designs. In our investigation, the scoping study was centered on the concept of well-being. Since 2010, well-being has emerged as an important research target for governments and corporations as well as for academics, yet it is far from clear to what the term refers. Given the ambiguity of meaning, it is clear that a scoping review, rather than either a systematic review or a narrative review of available literature, would be best suited to our goals.
The origins of the concept of well-being can be traced at least as far back as the 4th century bc , when philosophers produced normative explanations of the good life (e.g., eudaimonia, hedonia, and harmony). However, contemporary interest in the concept seemed to have been regenerated by the concerns of economists and, most recently, psychologists. These days, governments are equally concerned with measuring well-being to inform policy and conduct surveys of well-being to assess that state of the nation (see, e.g., Office for National Statistics, 2012 )—but what are they assessing?
We adopted a two-step process to address the research question, “What is the meaning of ‘well-being’ in the context of public policy?” First, we explored the existing thesauri of eight databases to establish those higher order headings (if any) under which articles with relevance to well-being might be cataloged. Thus, we searched the following databases: Cumulative Index of Nursing and Allied Health Literature, EconLit, Health Management Information Consortium, Medline, Philosopher’s Index, PsycINFO, Sociological Abstracts, and Worldwide Political Science Abstracts. Each of these databases adopts keyword-controlled vocabularies. In other words, they use inbuilt statistical procedures to link core terms to a set lexis of phrases that depict the concepts contained in the database. Table 19.2 shows each database and its associated taxonomy. The contents of Table 19.2 point toward a linguistic infrastructure in terms of which academic discourse is conducted, and our task was to extract from this infrastructure the semantic web wherein the concept of well-being is situated. We limited the thesaurus terms to well-being and its variants (i.e., wellbeing or well being). If the term was returned, it was then exploded to identify any associated terms.
To develop the conceptual map, we conducted a free-text search for well-being and its variants within the context of public policy across the same databases. We orchestrated these searches across five time frames: January 1990 to December 1994, January 1995 to December 1999, January 2000 to December 2004, January 2005 to December 2009, and January 2010 to October 2011. Naturally, different disciplines use different words to refer to well-being, each of which may wax and wane in usage over time. The searches thus sought to quantitatively capture any changes in the use and subsequent prevalence of well-being and any referenced terms (i.e., to trace a biography).
It is important to note that we did not intend to provide an exhaustive, systematic search of all the relevant literature. Rather, we wanted to establish the prevalence of well-being and any referenced (i.e., allied) terms within the context of public policy. This has the advantage of ensuring that any identified words are grounded in the literature (i.e., they represent words actually used by researchers to talk and write about well-being in policy settings). The searches were limited to abstracts to increase the specificity, albeit at some expense to sensitivity, with which we could identify relevant articles.
We also employed inclusion/exclusion criteria to facilitate the process by which we selected articles, thereby minimizing any potential bias arising from our subjective interpretations. We included independent, stand-alone investigations relevant to the study’s objectives (i.e., concerned with well-being in the context of public policy), which focused on well-being as a central outcome or process and which made explicit reference to “well-being” and “public policy” in either the title or the abstract. We excluded articles that were irrelevant to the study’s objectives, those that used noun adjuncts to focus on the well-being of specific populations (i.e., children, elderly, women) and contexts (e.g., retirement village), and those that focused on deprivation or poverty unless poverty indices were used to understand well-being as opposed to social exclusion. We also excluded book reviews and abstracts describing a compendium of studies.
Using these criteria, Joanne Wilson conducted the review and recorded the results on a template developed specifically for the project, organized chronologically across each database and timeframe. Results were scrutinized by two other colleagues to ensure the validity of the search strategy and the findings. Any concerns regarding the eligibility of studies for inclusion were discussed among the research team. I then analyzed the co-occurrence of the key terms in the database. The resultant conceptual map is shown in Figure 19.4.
The position of a concept in a network—a study of “well-being.” Node size is proportional to the frequency of terms in 54 selected abstracts. Line thickness is proportional to the co-occurrence of two terms in any phrase of three words (e.g., subjective well-being, economics of well-being, well-being and development).
The diagram can be interpreted as a visualization of a conceptual space. So, when academics write about well-being in the context of public policy, they tend to connect the discussion to the other terms in the matrix. “Happiness,” “health,” “economic,” and “subjective,” for example, are relatively dominant terms in the matrix. The node size of these words suggests that references to such entities is only slightly less than references to well-being itself. However, when we come to analyze how well-being is talked about in detail, we see specific connections come to the fore. Thus, the data imply that talk of “subjective well-being” far outweighs discussion of “social well-being” or “economic well-being.” Happiness tends to act as an independent node (there is only one occurrence of happiness and well-being), probably suggesting that “happiness” is acting as a synonym for well-being. Quality of life is poorly represented in the abstracts, and its connection to most of the other concepts in the space is very weak—confirming, perhaps, that quality of life is unrelated to contemporary discussions of well-being and happiness. The existence of “measures” points to a distinct concern to assess and to quantify expressions of happiness, well-being, economic growth, and gross domestic product. More important and underlying this detail, there are grounds for suggesting that there are in fact a number of tensions in the literature on well-being.
On the one hand, the results point toward an understanding of well-being as a property of individuals—as something that they feel or experience. Such a discourse is reflected through the use of words like happiness, subjective , and individual . This individualistic and subjective frame has grown in influence over the past decade in particular, and one of the problems with it is that it tends toward a somewhat content-free conceptualization of well-being. To feel a sense of well-being, one merely states that one is in a state of well-being; to be happy, one merely proclaims that one is happy (cf., Office for National Statistics, 2012 ). It is reminiscent of the conditions portrayed in Aldous Huxley’s Brave New World , wherein the rulers of a closely managed society gave their priority to maintaining order and ensuring the happiness of the greatest number—in the absence of attention to justice or freedom of thought or any sense of duty and obligation to others, many of whom were systematically bred in “the hatchery” as slaves.
On the other hand, there is some intimation in our web that the notion of well-being cannot be captured entirely by reference to individuals alone and that there are other dimensions to the concept—that well-being is the outcome or product of, say, access to reasonable incomes, to safe environments, to “development,” and to health and welfare. It is a vision hinted at by the inclusion of those very terms in the network. These different concepts necessarily give rise to important differences concerning how well-being is identified and measured and therefore what policies are most likely to advance well-being. In the first kind of conceptualization, we might improve well-being merely by dispensing what Huxley referred to as “soma” (a superdrug that ensured feelings of happiness and elation); in the other case, however, we would need to invest in economic, human, and social capital as the infrastructure for well-being. In any event and even at this nascent level, we can see how CTA can begin to tease out conceptual complexities and theoretical positions in what is otherwise routine textual data.
Putting the Content of Documents in Their Place
I suggested in my introduction that CTA was a method of analysis—not a method of data collection or a form of research design. As such, it does not necessarily inveigle us into any specific forms of either design or data collection, though designs and methods that rely on quantification are dominant. In this closing section, however, I want to raise the issue as to how we should position a study of content in our research strategies as a whole. We must keep in mind that documents and records always exist in a context and that while what is “in” the document may be considered central, a good research plan can often encompass a variety of ways of looking at how content links to context. Hence, in what follows, I intend to outline how an analysis of content might be combined with other ways of looking at a record or text and even how the analysis of content might be positioned as secondary to an examination of a document or record. The discussion calls on a much broader analysis, as presented in Prior ( 2011 ).
I have already stated that basic forms of CTA can serve as an important point of departure for many types of data analysis—for example, as discourse analysis. Naturally, whenever “discourse” is invoked, there is at least some recognition of the notion that words might play a part in structuring the world rather than merely reporting on it or describing it (as is the case with the 2002 State of the Nation address that was quoted in the section “Units of Analysis”). Thus, for example, there is a considerable tradition within social studies of science and technology for examining the place of scientific rhetoric in structuring notions of “nature” and the position of human beings (especially as scientists) within nature (see, e.g., work by Bazerman, 1988 ; Gilbert & Mulkay, 1984 ; and Kay, 2000 ). Nevertheless, little, if any, of that scholarship situates documents as anything other than inert objects, either constructed by or waiting patiently to be activated by scientists.
However, in the tradition of the ethnomethodologists (Heritage, 1991 ) and some adherents of discourse analysis, it is also possible to argue that documents might be more fruitfully approached as a “topic” (Zimmerman & Pollner, 1971 ) rather than a “resource” (to be scanned for content), in which case the focus would be on the ways in which any given document came to assume its present content and structure. In the field of documentation, these latter approaches are akin to what Foucault ( 1970 ) might have called an “archaeology of documentation” and are well represented in studies of such things as how crime, suicide, and other statistics and associated official reports and policy documents are routinely generated. That, too, is a legitimate point of research focus, and it can often be worth examining the genesis of, say, suicide statistics or statistics about the prevalence of mental disorder in a community as well as using such statistics as a basis for statistical modeling.
Unfortunately, the distinction between topic and resource is not always easy to maintain—especially in the hurly-burly of doing empirical research (see, e.g., Prior, 2003 ). Putting an emphasis on “topic,” however, can open a further dimension of research that concerns the ways in which documents function in the everyday world. And, as I have already hinted, when we focus on function, it becomes apparent that documents serve not merely as containers of content but also very often as active agents in episodes of interaction and schemes of social organization. In this vein, one can begin to think of an ethnography of documentation. Therein, the key research questions revolve around the ways in which documents are used and integrated into specific kinds of organizational settings, as well as with how documents are exchanged and how they circulate within such settings. Clearly, documents carry content—words, images, plans, ideas, patterns, and so forth—but the manner in which such material is called on and manipulated, and the way in which it functions, cannot be determined (though it may be constrained) by an analysis of content. Thus, Harper’s ( 1998 ) study of the use of economic reports inside the International Monetary Fund provides various examples of how “reports” can function to both differentiate and cohere work groups. In the same way. Henderson ( 1995 ) illustrated how engineering sketches and drawings can serve as what she calls conscription devices on the workshop floor.
Documents constitute a form of what Latour ( 1986 ) would refer to as “immutable mobiles,” and with an eye on the mobility of documents, it is worth noting an emerging interest in histories of knowledge that seek to examine how the same documents have been received and absorbed quite differently by different cultural networks (see, e.g., Burke, 2000 ). A parallel concern has arisen with regard to the newly emergent “geographies of knowledge” (see, e.g., Livingstone, 2005 ). In the history of science, there has also been an expressed interest in the biography of scientific objects (Latour, 1987 , p. 262) or of “epistemic things” (Rheinberger, 2000 )—tracing the history of objects independent of the “inventors” and “discoverers” to which such objects are conventionally attached. It is an approach that could be easily extended to the study of documents and is partly reflected in the earlier discussion concerning the meaning of the concept of well-being. Note how in all these cases a key consideration is how words and documents as “things” circulate and translate from one culture to another; issues of content are secondary.
Studying how documents are used and how they circulate can constitute an important area of research in its own right. Yet even those who focus on document use can be overly anthropocentric and subsequently overemphasize the potency of human action in relation to written text. In that light, it is interesting to consider ways in which we might reverse that emphasis and instead to study the potency of text and the manner in which documents can influence organizational activities as well as reflect them. Thus, Dorothy Winsor ( 1999 ), for example, examined the ways in which work orders drafted by engineers not only shape and fashion the practices and activities of engineering technicians but also construct “two different worlds” on the workshop floor.
In light of this, I will suggest a typology (Table 19.3 ) of the ways in which documents have come to be and can be considered in social research.
While accepting that no form of categorical classification can capture the inherent fluidity of the world, its actors, and its objects, Table 19.3 aims to offer some understanding of the various ways in which documents have been dealt with by social researchers. Thus, approaches that fit into Cell 1 have been dominant in the history of social science generally. Therein, documents (especially as text) have been analyzed and coded for what they contain in the way of descriptions, reports, images, representations, and accounts. In short, they have been scoured for evidence. Data analysis strategies concentrate almost entirely on what is in the “text” (via various forms of CTA). This emphasis on content is carried over into Cell 2–type approaches, with the key differences being that analysis is concerned with how document content comes into being. The attention here is usually on the conceptual architecture and sociotechnical procedures by means of which written reports, descriptions, statistical data, and so forth are generated. Various kinds of discourse analysis have been used to unravel the conceptual issues, while a focus on sociotechnical and rule-based procedures by means of which clinical, police, social work, and other forms of records and reports are constructed has been well represented in the work of ethnomethodologists (see Prior, 2011 ). In contrast, and in Cell 3, the research focus is on the ways in which documents are called on as a resource by various and different kinds of “user.” Here, concerns with document content or how a document has come into being are marginal, and the analysis concentrates on the relationship between specific documents and their use or recruitment by identifiable human actors for purposeful ends. I have pointed to some studies of the latter kind in earlier paragraphs (e.g., Henderson, 1995 ). Finally, the approaches that fit into Cell 4 also position content as secondary. The emphasis here is on how documents as “things” function in schemes of social activity and with how such things can drive, rather than be driven by, human actors. In short, the spotlight is on the vita activa of documentation, and I have provided numerous example of documents as actors in other publications (see Prior, 2003 , 2008 , 2011 ).
Content analysis was a method originally developed to analyze mass media “messages” in an age of radio and newspaper print, well before the digital age. Unfortunately, CTA struggles to break free of its origins and continues to be associated with the quantitative analysis of “communication.” Yet, as I have argued, there is no rational reason why its use must be restricted to such a narrow field, because it can be used to analyze printed text and interview data (as well as other forms of inscription) in various settings. What it cannot overcome is the fact that it is a method of analysis and not a method of data collection. However, as I have shown, it is an analytical strategy that can be integrated into a variety of research designs and approaches—cross-sectional and longitudinal survey designs, ethnography and other forms of qualitative design, and secondary analysis of preexisting data sets. Even as a method of analysis, it is flexible and can be used either independent of other methods or in conjunction with them. As we have seen, it is easily merged with various forms of discourse analysis and can be used as an exploratory method or as a means of verification. Above all, perhaps, it crosses the divide between “quantitative” and “qualitative” modes of inquiry in social research and offers a new dimension to the meaning of mixed methods research. I recommend it.
Abbott, A. ( 1992 ). What do cases do? In C. C. Ragin & H. S. Becker (Eds.), What is a case? Exploring the foundations of social inquiry (pp. 53–82). Cambridge, England: Cambridge University Press.
Google Scholar
Google Preview
Altheide, D. L. ( 1987 ). Ethnographic content analysis. Qualitative Sociology, 10, 65–77.
Arksey, H. , & O’Malley, L. ( 2005 ). Scoping studies: Towards a methodological framework. International Journal of Sociological Research Methodology, 8, 19–32.
Babbie, E. ( 2013 ). The practice of social research (13th ed.) Belmont, CA: Wadsworth.
Bazerman, C. ( 1988 ). Shaping written knowledge. The genre and activity of the experimental article in science . Madison: University of Wisconsin Press.
Becker, G. ( 1997 ). Disrupted lives. How people create meaning in a chaotic world . London, England: University of California Press.
Berelson, B. ( 1952 ). Content analysis in communication research . Glencoe, IL: Free Press.
Bowker, G. C. , & Star, S. L. ( 1999 ). Sorting things out. Classification and its consequences . Cambridge, MA: MIT Press.
Braun, V. , & Clarke, V. ( 2006 ). Using thematic analysis in psychology. Qualitative Research in Psychology, 3, 77–101.
Breuer, J. , & Freud, S. ( 2001 ). Studies on hysteria. In L. Strachey (Ed.), The standard edition of the complete psychological works of Sigmund Freud (Vol. 2). London, England: Vintage.
Bryman, A. ( 2008 ). Social research methods (3rd ed.). Oxford, England: Oxford University Press.
Burke, P. ( 2000 ). A social history of knowledge. From Guttenberg to Diderot . Cambridge, MA: Polity Press.
Bury, M. ( 1982 ). Chronic illness as biographical disruption. Sociology of Health and Illness, 4, 167–182.
Carley, K. ( 1993 ). Coding choices for textual analysis. A comparison of content analysis and map analysis. Sociological Methodology, 23, 75–126.
Charon, R. ( 2006 ). Narrative medicine. Honoring the stories of illness . New York, NY: Oxford University Press.
Creswell, J. W. ( 2007 ). Designing and conducting mixed methods research . Thousand Oaks, CA: Sage.
Davison, C. , Davey-Smith, G. , & Frankel, S. ( 1991 ). Lay epidemiology and the prevention paradox. Sociology of Health & Illness, 13, 1–19.
Evans, M. , Prout, H. , Prior, L. , Tapper-Jones, L. , & Butler, C. ( 2007 ). A qualitative study of lay beliefs about influenza. British Journal of General Practice, 57, 352–358.
Foucault, M. ( 1970 ). The order of things. An archaeology of the human sciences . London, England: Tavistock.
Frank, A. ( 1995 ). The wounded storyteller: Body, illness, and ethics . Chicago, IL: University of Chicago Press.
Gerring, J. ( 2004 ). What is a case study, and what is it good for? The American Political Science Review, 98, 341–354.
Gilbert, G. N. , & Mulkay, M. ( 1984 ). Opening Pandora’s box. A sociological analysis of scientists’ discourse . Cambridge, England: Cambridge University Press.
Glaser, B. G. , & Strauss, A. L. ( 1967 ). The discovery of grounded theory. Strategies for qualitative research . New York, NY: Aldine de Gruyter.
Goode, W. J. , & Hatt, P. K. ( 1952 ). Methods in social research . New York, NY: McGraw–Hill.
Greimas, A. J. ( 1970 ). Du Sens. Essays sémiotiques . Paris, France: Ėditions du Seuil.
Habermas, J. ( 1987 ). The theory of communicative action: Vol.2, A critique of functionalist reason ( T. McCarthy , Trans.). Cambridge, MA: Polity Press.
Harper, R. ( 1998 ). Inside the IMF. An ethnography of documents, technology, and organizational action . London, England: Academic Press.
Henderson, K. ( 1995 ). The political career of a prototype. Visual representation in design engineering. Social Problems, 42, 274–299.
Heritage, J. ( 1991 ). Garkfinkel and ethnomethodology . Cambridge, MA: Polity Press.
Hydén, L-C. ( 1997 ). Illness and narrative. Sociology of Health & Illness, 19, 48–69.
Kahn, R. , & Cannell, C. ( 1957 ). The dynamics of interviewing. Theory, technique and cases . New York, NY: Wiley.
Kay, L. E. ( 2000 ). Who wrote the book of life? A history of the genetic code . Stanford, CA: Stanford University Press.
Kleinman, A. , Eisenberg, L. , & Good, B. ( 1978 ). Culture, illness & care, clinical lessons from anthropologic and cross-cultural research. Annals of Internal Medicine, 88, 251–258.
Kracauer, S. ( 1952 ). The challenge of qualitative content analysis. Public Opinion Quarterly, Special Issue on International Communications Research (1952–53), 16, 631–642.
Krippendorf, K. ( 2004 ). Content analysis: An introduction to its methodology (2nd ed.). Thousand Oaks, CA: Sage.
Latour, B. ( 1986 ). Visualization and cognition: Thinking with eyes and hands. Knowledge and Society, Studies in Sociology of Culture, Past and Present, 6, 1–40.
Latour, B. ( 1987 ). Science in action. How to follow scientists and engineers through society . Milton Keynes, England: Open University Press.
Livingstone, D. N. ( 2005 ). Text, talk, and testimony: Geographical reflections on scientific habits. An afterword. British Society for the History of Science, 38, 93–100.
Luria, A. R. ( 1975 ). The man with the shattered world. A history of a brain wound ( L. Solotaroff , Trans.). Harmondsworth, England: Penguin.
Martin, A. , & Lynch, M. ( 2009 ). Counting things and counting people: The practices and politics of counting. Social Problems, 56, 243–266.
Merton, R. K. ( 1968 ). Social theory and social structure . New York, NY: Free Press.
Morgan, D. L. ( 1993 ). Qualitative content analysis. A guide to paths not taken. Qualitative Health Research, 2, 112–121.
Morgan, D. L. ( 1998 ). Practical strategies for combining qualitative and quantitative methods. Qualitative Health Research, 8, 362–376.
Morris, P. G. , Prior, L. , Deb, S. , Lewis, G. , Mayle, W. , Burrow, C. E. , & Bryant, E. ( 2005 ). Patients’ views on outcome following head injury: A qualitative study, BMC Family Practice, 6, 30.
Neuendorf, K. A. ( 2002 ). The content analysis guidebook . Thousand Oaks: CA: Sage.
Newman, J. , & Vidler, E. ( 2006 ). Discriminating customers, responsible patients, empowered users: Consumerism and the modernisation of health care, Journal of Social Policy, 35, 193–210.
Office for National Statistics. ( 2012 ). First ONS annual experimental subjective well-being results . London, England: Office for National Statistics. Retrieved from http://www.ons.gov.uk/ons/dcp171766_272294.pdf
Prior, L. ( 2003 ). Using documents in social research . London, England: Sage.
Prior, L. ( 2008 ). Repositioning documents in social research. Sociology. Special Issue on Research Methods, 42, 821–836.
Prior, L. ( 2011 ). Using documents and records in social research (4 vols.). London, England: Sage.
Prior, L. , Evans, M. , & Prout, H. ( 2011 ). Talking about colds and flu: The lay diagnosis of two common illnesses among older British people. Social Science and Medicine, 73, 922–928.
Prior, L. , Hughes, D. , & Peckham, S. ( 2012 ) The discursive turn in policy analysis and the validation of policy stories. Journal of Social Policy, 41, 271–289.
Ragin, C. C. , & Becker, H. S. ( 1992 ). What is a case? Exploring the foundations of social inquiry . Cambridge, England: Cambridge University Press.
Rheinberger, H.-J. ( 2000 ). Cytoplasmic particles. The trajectory of a scientific object. In Daston, L. (Ed.), Biographies of scientific objects (pp. 270–294). Chicago, IL: Chicago University Press.
Ricoeur, P. ( 1984 ). Time and narrative (Vol. 1., K. McLaughlin & D, Pellauer, Trans.). Chicago, IL: University of Chicago Press.
Roe, E. ( 1994 ). Narrative policy analysis, theory and practice . Durham, NC: Duke University Press.
Ryan, G. W. , & Bernard, H. R. ( 2000 ). Data management and analysis methods. In N. K. Denzin & Y. S. Lincoln (Eds.), Handbook of qualitative research (2nd ed., pp. 769–802). Thousand Oaks, CA: Sage.
Schutz, A. , & Luckman, T. ( 1974 ). The structures of the life-world (R. M. Zaner & H. T. Engelhardt, Trans.). London, England: Heinemann.
SPSS. ( 2007 ). Text mining for Clementine . 12.0 User’s Guide. Chicago, IL: SPSS.
Weber, R. P. ( 1990 ). Basic content analysis . Newbury Park, CA: Sage.
Winsor, D. ( 1999 ). Genre and activity systems. The role of documentation in maintaining and changing engineering activity systems. Written Communication, 16, 200–224.
Zimmerman, D. H. , & Pollner, M. ( 1971 ). The everyday world as a phenomenon. In J. D. Douglas (Ed.), Understanding everyday life (pp. 80–103). London, England: Routledge & Kegan Paul.
- About Oxford Academic
- Publish journals with us
- University press partners
- What we publish
- New features
- Open access
- Institutional account management
- Rights and permissions
- Get help with access
- Accessibility
- Advertising
- Media enquiries
- Oxford University Press
- Oxford Languages
- University of Oxford
Oxford University Press is a department of the University of Oxford. It furthers the University's objective of excellence in research, scholarship, and education by publishing worldwide
- Copyright © 2024 Oxford University Press
- Cookie settings
- Cookie policy
- Privacy policy
- Legal notice
This Feature Is Available To Subscribers Only
Sign In or Create an Account
This PDF is available to Subscribers Only
For full access to this pdf, sign in to an existing account, or purchase an annual subscription.
IMAGES
VIDEO